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PREFACE

The theory of hidden Markov models was first
developed in the mid 1960s by Baum and Welch.
Applications of hidden Markov models to automatic speech
recogunition became a research topic in the 1970s in the
pioneering work of Baker, Jelinek and others. The theory
kas subsequently been successfully applied in many state-of-
the-art speech recognition systems. In the 1980s, there has
been a dramatic increase in the application of hidden
Markov models, not only for speech recognition, but also for
many other areas. We have been involved for several years
in the development of hidden Markov models for speech
recognition and we believe that an appropriate textbook on
hidden Markov modelling will greatly help postgraduate
students in Electrical Engineering or Computer Science.

This book is primarily concerned with basic theories in
hidden Markov modelling. However, some essential resalts of
general pattern recognition and speech processing are
included to help readers understand and apply the hidden
Markov model for speech recognition. The main body of this
book is devoted to the unified treatment of conventional
vector quantisation, discrete hiddem Markov models, and
continuous hidden Markov models. We have presented an
extensive discussion of @-functions that are crucial in using
and understanding the theory. We have also devoted many
pages to practical issues in hidden Markov modelling,
Finally, experimental examples are included to demonstrate
how the theory is applied in practice. We hope such a
treatment will be useful to both beginners as an introductory
book and experts as a reference book.
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CHAPTER ONE

INTRODUCTION

Speech has evolved over many centuries to achieve
today’s rich and elaborate form. Humanr communications are
today dominated by spoken language, whether face to face,
over the telephone, or through television and radio. In direct
contrast, human —machine {(computer) interaction is largely
dependent on keyboard strokes, or other mechanical means.
As such, this interaction mode demands skill development by
individuals, and presents a barrier to widespread use of
computer systems. Consequently, the goal of overcoming this
barrier by building machines that understand spoken
language has attracted the attention of scientists over the
past 50 years. A spoken language understanding interface
would be invaluable since speech communication is a natural
and efficient mode for the human user. Example applications
include automatic dictation (especially for Chinese and
Japanese), database query (such as airline reservations),
command and control, and computer-assisted instruction.
Achievement of this spoken language understanding
demands integration of both speech processing and natural
language processing. One of the key problems is automatic
speech recognition. The task of a speech recognition system
is to take, as input, the acoustic waveform produced by the
speaker and to produce, as output, a sequence of linguistic
words corresponding to the input utterance.

Many uncertainties exist in speech recognition. The
uncertainty associated with words that have been spoken to
a speech recognition system is compounded by the acoustic
uncertainty of the different accents and speaking styles of
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individual speakers; by the lexical and grammatical
uncertainty of the language the speaker uses: and by the
Sémantic uncertainty of the subject the speaker wants to talk
about. The speaker may inquire about flights to Beijing, or
may reserve a ticket to Edinburgh, or may even be dictating
an article in Chinese, Acoustic uncertainty has many
components, such ag the general quality of a speaker’s voice;
speaking speed and loudness; accent; and unusual speaking
conditions such ag illness or stress, Iy addition, acoustic
contaminants such as room noise or competing speakers
constitute a problem. A successful speech recognition system
must take into account all of these acoustic uncertainties,
Lexical, syntactic, and semantic knowledge must then be
applied in a manner that permits cooperative interaction
among the various levels of acoustic, phonetic and linguistic
knowledge in minimising the uncertainty. However, when
tompared with human performance, only very restricted
speech can currently be used in existing speech recognition
8ystems. The principle constraints include:

(1) speaker dependence rather than speaker independence,

(2) isolated word input rather than continuous speech
operation,

(3) limited rather than extensive vocabulary, and

(4)  artificial grammar rather than natural language.

Scientists with backgrounds in signal processing,
pattern recognition, artificial intelligence, linguistics,
statistics, information theory, and psychology have been
attacking the many problems of speech recognition. Their
efforts can he broadly classified into the following.

(1) Modelling of the speech signal and its variabilities to
facilitate efficient information extraction. These
variabilities include phonetic and linguistic effects,
inter-speaker and intra-speaker variabilities, and
environmental acoustic variabilities,

CHAPTER - ~ | 3

(2) Automatic mnaﬂmmmcn and modelling of linguistic
events (lexicon, syntax, semantics, discourse,
pragmatics, and task structure).

(3) Developing human factors methods for the design of an
effective user interface.

Research in speech recognition has followed two
primary routes: those adopting a knowledge-based approach,
and those adopting a statistically data-based approach.
Knowledge-based approaches to speech recognition and
understanding [10] have attempted to express human
knowledge of speech in terms of acoustic-phonetic rules
based on specified features of the acoustic waveform. For
these approaches, the acoustic signal is usually first
segmented and labelled into phoneme-like units, and the
resulting phoneme string is used for lexical and syntactic
analysis. Words in the lexicon are represented in terms of
phonemic spellings, and syntax is usually described by
conventional linguistic means. Knowledge is represented in
computer programs created by linguistic and phonetic
experts [5,15]. It is known that human experts can be
trained to read speech spectra, which supports the
proposition that distinct features exist in the speech
spectrum {15]. Machire realisation of this human ability is
however currently far poorer than the well-trained human
expert. In addition to the absence of good understanding of
the human auditory mechanism, this knowledge-based
approach is also constrained by the inability of human
experts to formalise completely their knowledge. Totally
reliable features are required to represent speech aignals,
before acoustic segmentation, phonetic labelling and lexical
decoding can be carried out with any degree of accuracy.
Formants are considered to be one of the most important
features in speech recognition, and various methods have
been developed to track formants from speech signals. None
of this work to date has achieved the required accuracy for
speech recogrition and it can be argued that, even if an
excellent formant tracker were available, a priori knowledge
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would still be needed to indicate phonetic context for formant
tracking. However, without good feature representation (of
formants etc.), it is extremely difficult to obtain the
Decessary a priori phonetic knowledge based on these
features. Thus some sophisticated and interactive formant
tracking algorithms are necesgary in order to obtain reliable
formant estimation. This remains an unsclved problem for
the knowledge-based approach. It should be noted, however,
that the knowledge-based approach remains an important
research area [2,7].

In contrast to the knowledge-based approach,
alternative data-based statistical approaches have achieved
considerable success. These are usually based on modelling
the speech signal itself by some well-defined statistical
algorithms that can automatically extract knowledge from
speech data. This book will focus on the alternative
statistical approaches, and the knowledge-based approach
will not be considered further in this work. The
predominant class of these algorithms is the hidden Markov
model (HMM) (1,4,9,11]. An HMM-based speech system
depends on three key factors:

(1) a detailed modelling scheme which is capable of
accommodating various uncertainties,

(2)  access to sufficient speech training data, and

(3) an automatic learning algorithm to  improve the
recognition accuracy.

By using HMMs, the speech signal variability in
parameter space and time can be modelled effectively.
Unlike the knowledge-based approach, the HMM learning
procedure is achieved by presenting speech data to HMMs
and automatically improving the models by data as opposed
to some heuristic rules presented by human experts. In
general, the more data presented to the model, the higher
the recognition accuracy achieved. Motivated by neural
network research, improvements can also be obtained by
incorporating classification into parameter estimation [3,6].

) ;
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HMM methods have presented speech recognition with a
solid theoretical basis, and have resulted in significant
advances in  large-vocabulary continuous speaker-
independent speech recognition [11].

The HMM can be based on either discrete output
probability distributions or continuous output probability
density functions, which are very important to acoustic
modelling. Both the discrete HMM and the continuous HMM
are widely used in state-of-the-art speech recognition
systems [1,6,11,12,14]. For the discrete HMM, vector
quantisation (VQ) makes it possible to use a non-parametric,
discrete output probability distribution to model the
observed speech signals. The objective of VQ is to find the set
of reproduction vectors, or codebook, that represents an
information source with minimum expected distortion.
Under the discrete HMM framework, VQ is first used to
obtain discrete output symbols. The discrete HMM then
models observed discrete symbols. In contrast, the
continuous mixture HMM [13] uses continuous mixture
probability density functions to model speech parameters
directly without using V@, and usually needs extensive
training data and computation times.

On the other hand, the semi-continuous HMM (8],
which is a very general model including both discrete and
continuous mixture HMMs as its special forms, unifies VQ,
the discrete HMM, and the continuous mixture HMM.
Based on the assumption that each VQ codeword can be
represented by a continuous probability density function, the
semi-continuous cutput probability is then a combination of
discrete model-dependent weighting coefficients with these
continuous codebook probability density functions. In
comparison with the conventional continuous mixture HMM,
the semi-continuous HMM can offer the modelling ability of
large-mixture probability density functions. In addition, the
number of free parameters and the computational complexity
can be reduced because all of the probability density
functions are tied together in the codebook. The semi-
continuous hidden Markov model thus provides a good
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solution to the conflict between detailed acoustic modeling
and insufficient training data. In comparison with the
conventional discrete HMM, robustness can be enhanced by
using multiple codewords in deriving the semi-continuous
output probability; and the VQ codebook itself can be
optimised together with the HMM parameters in terms of
the maximum likelihood criterion. Unified modelling can
substantially minimise the information lost in conventiona!l
VQ and therefore leads to better performance than both the
discrete HMM and the continuous mixture HMM.

This book will introduce the necessary mathematical
background to understand the theory of HMMs; present a
complete theory of hidden Markov modelling in depth and
scope; and offer practical guidance for the use of both
fundamental and advanced HMM technologies in speech
recoguition problems; in particular, acoustic modelling
problems.

1.1. Book Organisation

Throughout the book, unless explicitly noted otherwise,
the discrete probability of finite symbols O will be denoted
by Pr(0); and the continuous probability density function for
the continuous observations x will be denoted by F(x).
Fundamentals of probability and pattern recognition theories
involved in speech recognition will be reviewed and
discussed in Chapters 2 and 3.

Chapter 4 describes VQ as a special pattern recognition
technique that has been widely used in speech processing,
coding and recognition. The modelling method can be
viewed as a problem of estimating parameters for a family of
continuous mixture probability density functions, which pave
the way for the unified modelling approach of the VQ and
HMM.

Section 1.1. J 7

Mathematical principles of the HMM and related
techniques for speech recognition are described in Chapter 5.
This chapter is the foundation of the statistical modelling
tool, the HMM, which will be discussed throughout the book,
Chapter 6 describes continuous HMMs, which parallel
discrete HMMs. The continuous mixture HMM is discussed
in detail, since it is strongly related to the semi-continuous
HMM. Chapters 2—§ represent the theoretic foundation to
the semi-continuous HMM.

The semi-continuous HMM is presented in Chapter 7.
It offers modelling power similar to the continuous mixture
HMM with a large number of mixture density functions,
while demanding much lower computational complexity than
the continucus mixture HMM. In additiors, the semi-
continuous output probabiiity density function can be well
smoothed in comparison with the discrete HMM. From the
discrete HMM point of view, the semi-continuous HMM can
minimise the information lost in VQ. From the continuous
mixture HMM point of view, the semi-continuous HMM can
reduce the number of free parameters and computational
complexity by tying continuocus density functions, The
unified theory of VQ and hidden Markov modelling, which
are heavily relevant to the discussion in Chapters 5 and §,
are highlighted.

Chapter 8 discusses issues for designing a speech
recognition system using HMMs. Topics such as choice of
modelling unit, use of smoothing techniques, re-estimation
criteria, and multiple features are included.

Chapter 9 presents experimental examples in several
typical speech recognition systems. Implementational issues
are discussed. C programs are included as examples,
Relationships among continuous HMMs, discrete HMMs, and
semi-continuous HMMs are highlighted.
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CHAPTER TWO

FUNDAMENTALS OF PATTERN RECOGNITION

Pattern recognition, which represents one of the
seemingly easiest problems for human beings, has proven to
be one of the most difficult problems for machines. This gap
between human and machine capability has attracted the
interest of many scientific researchers explering the
processes of pattern recognition. However, machine pattern
recognition performance is still limited by the fact that the
process of human pattern recognition is not well understood.
Therefore, a mathematical approach is usually adopted to
make decisions (in a probabilistic sense) about—w
category observed daty (pattern)-batongs to. Both %&cw
knowledge obtained from specific observation data, “an
a priori knowledge of the categories play key roles in such
probabilistic decision making, and automatic learning
methods, which extract ‘a posteriori knowledge from
observation data, currently represent one of the most
important issues in pattern recognition. Such learning
methods can be classified into two types. The first type is

{supervised” learning in which category information is

provided for the data and only the probabilistic structure is
learned. The second type is {unsupervised learning in which
category information is wnavailable and, in this case, the
category must be automatically formed together with
learning of probabilistic structure. In this chapter,

ﬁ..u_,ccmc::w and decision itheory are first introduced; then
supervised and unsupervised learning methods are described
ir detail. The purpose of this chapter is to provide the reader
with the basic knowledge required to understand the theory
of hidden Markov modelling introduced later.

f_\
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2.1. Probability Theory [10]

Probability can be used to advantage in representing
the degree of confidence in the outcomes of some actions
(observations), which are not definite. In probability theory,
the term semple space, 8, is used to refer to the totality of all
possible outcomes. Event refers to a subset of the sample
apace, or a collection of outcomes. The probability of event A
can be denoted as Pr(A), which may be computed by
counting the total number, N, of all observations and the
number of observations N, whose outcome belongs to the
event A. Then Pr(A) can be defined as the relative frequency

o I ﬁn_.. (2.1.1)

2.1.1. Conditional probabilities

Let us consider two experiments E1 and E2, whose
events are {A, A,...,A,} and {B, Bs, ..., B,}
respectively.

(1) Joint probability is the probability of occurrence of the
composite event AB;, where the event A; from E1 and
B; from E2 occur concurrently, and is denoied as
hu____A}._m.W.L.

(2) Marginal probability is the probability of occurrence of
an event whose probability is computed from the joint
probability as follows:

Pr(B))= D\Pr(AB,) or Pr(A)= 3\Pr(A,B;) (2.1.2)

i=1 j=1

(3) Conditional probability is the probability of occurrence
of event B, given that event A, has occurred. It can be
denoted as Pr(B;|A,), and reads 'probability of B; given
A/l
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An expression for the conditional probability Pr(B|A)
in terms of the joint probability Pr(AB) and the marginal
probabilities Pr(A) and Pr(B) can be obtained as follows. Let
Nya, Np, and N,z be the number of observations whose
outcomes belong to events A, B and AB, respectively, and let
N be the total overall number of observations. Then,

Pr(AB)= .@W.w
(2.1.3)
Ny
Prid)=—

Given that the event A has occurred, we know that the
outcome is in A. There are N, outcomes in A. Now, for B to
occur given that A hag occurred, the outcome should belong
to A and B. There are Nap outcomes in ARB. Thus, the
probability of occurrence of B given A is;
Nys

Ny

_ Nyg/N

T NJ/N

Pr(AB)

Pr(A)

Pr(B)A)=

(2.1.4)

2.1.2. Useful probability expressions

The following useful expressions can be easily derived
from the previous section.

Pr(AB)=Pr(A|B)Pr(B)=Pr(BJA)Pr(4) (2.1.5)

Pr(ABC)=Pr(A)Pr(B|A)Pr(C|AB) (2.1.6)

Pr(A)= 3\Pr(A|B)Pr(B,) 2.1.7)
i=l1

Section 2.1. M 13

Pr(A|B)Pr(B;)

z (2.1.8)
Pr(A|B,)Pr(B;)
1

mv.._.ﬁm.._._}u“

h."
Eq. (2.1.6) is called the chain rule and Eq. (2.1.8) is called
the Bayes rule which can be obtained from Eq. (2.1.5) and
Eq. (2.1.7).

If the occurrence of event A; does not influence the
probability of occurrence of event B; and vice versa, then the
events are said to be statistically independent, and can be
Tepresented as:

Pr(A;B;)=Pr(A;)Pr(B)) (2.1.9a)
or
Pr(Ai[B)=Pr(A) , Pr(B;|A;)=Pr(B 1) ‘ (2.1.9b)

2.1.3. Random variables

Elements in a sample space may be numbered and
referred to by that number. A variable X which specifies the
numerical quantity in a sample space is called a random
variable. Therefore, a random variable X is a function which
maps an element in the sample space § onto a set of real
numbers x€R;. Since each event is a subset of the sample
Space, an event is represented as a set of {a} which satisfies
{a]X(a)=x}. We shall use capital letters to denote random
variables and lower-case letters to denote fizxed values of the
random variable. Thus, the probability that X —x is denoted
as:

PriX=x) = Pria)X{a)=x) (2.1.10)

When a random variable X is discrete, the allowable
values may be X1,%3, .. . ,%,. The probability that the
discrete random variable takes the value x; i3 denoted as
Pr(X=x;) and is called a probability mass function. The
sum of probability mass functions over all values of the
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R
random variable is equal to unity AMwlN. =x;) = 1). The
i=1
following frequently uged expressions of two random
variables X and Y can be easily derived using Eq. (2.1.5) to

(2.1.8):

. PrX=x,) = MBANHR:NHRL

i=t
- (2.1.11)
= M?Qna___wn&%wa\u%
i=1
Pr(X=x,Y=y)
PriX=x|Y =y = .
rEEY =) = ey
_ ﬁwAu\Hu‘a_NHaLﬁlNHh,_v (2.1.12)

Py = YiX =2)Pr(X =x,)
i=1

In a similar manner, if the random variables X and ¥ are
statistically independent, they can be represented as:
PriX=x.Y =y;) = ﬁﬁmﬁnatﬁlﬁu.&v

) ) (2.1.13)
i=12,..,n; j= 1,2,...m

When multiple random variables are dealt with as one
vector, it ia called a random vector.

2.1.4. Probability density functions

When a random variable X i8 continuous, the
probability that the continuous random variable takes the
value x is denoted as fx(x) and is called a probability density
function. The integral of the probability density function
over all values of the random variable is equal to unity

A._..n.iaun 1). The joint, marginal and conditional probability

density functions can be defined in a similar way. The
following expressions of two random variables X and Y are
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also frequently used.

fx®)= [ frylx.y) dy

w {21.14)
= [ frr(xly) fr() dy
_ fxylxy)
frix(y|x)= oo
Frr{xly) fr(y) (2.1.15)

I faraly) Fr(y) dy

If the random variables X and Y are statistically
independent, they are represented as:

\M.%HRQVH\.NAHV\._«QV (2.1.16)

2.2. Bayes Decision Theory (5]

Probability expressions mentioned in the previous
section can be used to make decisions with minimum error
rate. In such decision making, a priori knowledge about the
probability of the events and observed data about present
status are both employed under the decision frame.

2.2.1. A posteriori probability

Let us consider the problem of weather prediction,
where we have to decide tomorrow’s weather in one of the
three categories (events): Sunny, Cloudy, or Rainy. Available
information is the probability mass function Pr(w) of the
three categories. The variable w is a discrete random
variable with the values w=w; j=1,2,3. We call the
probability Pr{w;) a priori probability since it reflects our
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@ priori knowledge of how likely tomorrow’s weather is. If
we have to make decision based only on the a priori
probability, the most plausible decision may be made by
selecting the category w; with the highest a prior:
probability Pr(w;). This decision is obviously unreasonable,
because every day must be predicted to be one of three
categories, Sunny, Cloudy and Rainy,

If we are given further observable data, such as air
Pressure or temperature, we can make a more precise
decision. Let x be = continuous random variable whose
value is the air pressure, and fy|{x|w) be a category-
conditional probability density function (pdf). For simplicity,
we denote the pdf Fx|ulx|©) as flx|w;), where j=1,2,3 unless
there is ambiguity. Since we know the q priori probability
Pr(w;) and category-conditional pdf f(x|w,), we can compute
the conditional probability Pr{wj|x) using the Bayes rule:

\.ﬁh_e..bﬁlrﬁv
f(x)

.ﬁﬂﬁe..._ﬁu“

(2.2.1)

where
3
F@) = 3 flx|w)Pr(w))
i=1

The above probability is called the posteriori probability as
it is the probability of category «; after observing the air
pressure x. Bayes rule shows how the observed data x
changes the decision based on the « priori probability Pr{w ;)
using the a posteriori probability Pr{w;|x). Decision making
based on the a posteriori probability is more reliable,
because it employs both o priori knowledge together with
present observed data. In fact, if nhwmcl knowledge is
ambiguous %...ASLHM.ASMVHMlEuF then present ohserved
data controls the decision. If, on the other hand, present
observed data is ambiguous, then a priori knowledge
controls the decision. There will be many kinds of decision
rule based on a posteriori probability. Qur interest is to find
the decision rule which leads to minimum overall risk, or
minimum error rate in decision.,
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2.2.2. Bayes decision rule

Bayes decision rule is designed to minimise the overall
risk involved in making a decision. Let ia.._eb be the loss
function incurred for making decision a; when the true
category is w;. Here, the decision set is A={a,, . .. ,a,} and
the category set (sample space) is S ={w,, . . . ,w,}. Using the
¢ priori probability Pr(w;) and category-conditional pdf
f(xlw)), the a posteriori probability Pr{w;|x) is computed by
the Bayes rule as shown in Eq. (2.2.1). If we make decision
a; even when the true category is w;, we shall incur a loss
h(a;|w)). Since the a posteriori probability Pr(w;|x) is the
probability that the true category is w ; after observing the
data x, the expected loss associated with making decision a;
is:

L]
R(ai|x)= Dh(a;w)Pr(w;|z) (2.2.2)
j=1
The above expression is called the conditional risk.
The overall risk R is the expected loss associated with

‘a given decision rule. Here we employ an arbitrary decision

rule a(x) which maps the data x to one of decisions
A={ay,...,a). Since R(ajx) is the conditional risk
associated with decision g;, the overall risk is given by:

R= [R@®)x)f(x)dx (2.2.3)

Hf the decision rule a(x) is chosen so that the conditional risk
R(a(x)|x) is as small as possible for every x, then the overall
risk will be minimised. This leads to the Bayes decision rule:
In order to minimise the overall risk, compute the
conditional risk shown in Eq. (2.2.2) for i=1,...,r and select
the decision a; for which the conditional risk Ra;]x) is
minimum. Bayes decision rule is also applicable to multi-
variate elements x without loss of generality.
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2.2.3. gmiﬂna-mﬂ.oa-gnm decision rule

_Hm_muomm?unncu Enm_ebmbnrm um%om decision rule
can be defined as; :

0 i=;
hla|w) = i, j=1,..8 (2.2.4)
1 i=y

This loss function assigns no loss to a correct decision where
the true category is «; and the decision is a; which implies
that the true category must be w;, It assigns a unit loss to
&ny error where i#j. The risk corresponding to this loss
function equals the. average probability of error, since the
conditional risk is given as .

| R(aj|0)= Dk w,)Prw;jx)
j=1
= D Prw;|x) - Pr(uw,]x) (2.2.5)
j=1

=1—-Pr(w|x)

and Pr(w;|x) is the conditional Probability that decision «; is
correct after observing the data x. Therefore, in order to
minimise the average probability of error, or to achieve the
minimum error rate, we have to select the decision that the
category w; is correct, if the g posteriori probability Pr(w,|x)
18 a maximum. This decision rule hased on the maximum of
the a posteriori Probability Pr(w;|x) is called the minimum-
error-rate decision rule, since it can minimise the error rate.

2.2.4. Classifier and decision boundary

In decision Problems, observed data x are used to make
a precise decision of which category is plausible. This can
also be viewed ag a classification problem where unknown
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data x are classified into known categories, such as the
classification of short interval sounds into phonemes using
spectral data x. A classifier is designed to classify data x into
§ categories by using s discriminant functions gilx),
computing the similarities between the unknown data x and
each category w; and selecting the category w, corresponding
to

gilx)>gyx) for all j =i (2.2.8)

Figure 2.2.1. shows the relation between a classifier
and discriminant functions. In a Bayes ¢lassifier, unknown
data x are classified on the basis of Bayes decision rule
which minimises the conditional risk R{g;|x). Then the
discriminant function is:

8i{x)=—R{a;x) 2.2.7

In the minimum-error-rate classifier, the decision rule is to
maximise the a posteriori probability Pr(w,). Then

g1 (x) c
S ['v]
m
g2 (x) p
X . . w ———> a(x)

a
t
gs & 2
5 r

. decision

input

Figure 2.2.1. Block diagram of a classifier
based on discriminant functions.
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8ix)=Pr(w;]x)
__fxleiPriey {2.2.8)

2FGlw)Pr(w))
i=1

CHAPTER 2

As the classifier assigns data x to category w;, the data
space is divided into s regions, R;,.. R, which are called
decision regions. The houndaries between decision regions
are called decision boundaries and are represented as follows
(if they are contiguous):

gilx)=gi{x) 2.2.9)

2.3. Parametric Supervised Learning (5]

In the Bayes clagsifier, or the minimum-error-rate
classifier, a priori probability Pr(w,) and a category-
conditional pdf f (x[w;) are assumed to be known. However,
the category-conditional pdf is not known in advance, and
must be estimated or learned from the available training
data.

Learning methods can be based on parametric or non-
parametric approaches in estimating a category-conditional
pdf. In parametric learning, the pdf is assumed to have
certain probabilistic structure, such as the Gaussian pdf. In
such cases, only the parameters of the pdf need to be
estimated. On the other hand, in non-parametric learning,
no model structure is assumed and the pdf is directly
estimated from the training data. When large amounts of
sample data are available, non-parametric learning can
accurately reflect the underlying probabilistic structure of
the training data. However, available sample data are
normally limited in practice and parametric learning can
achieve good estimates if valid model assumptions are made.
It is also important to distinguish between supervised
learning and unsupervised learning. In supervised learning,
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information about the category of the sample data x are
given. Such sample data are usually called labelled. In
contrast, category label information is. unavailable in
unsupervised learning.

In this section, we will describe parametric supervised
learning, with particular emphasis on the Gaussian pdf
based on maximum  likelihood estimation. Parametric
unsupervised learning will be described in Section 2.4,

2.3.1. Maximum likelihood estimation

Maximum likelihood estimation is one of the most
widely used parametric learning methods. As the category-
conditional pdf is parameterised, let @; be a parameter
vector which characteriges category w;. Then the category-
conditional pdf is represented as a function of ¢; as
flxjw; , p;). Here, ®: is not a random vector, but some
unknown fixed value (parameter). In supervised learning, we
are given the category name w; for a set of sample data
Xi={xy,...,x, }. If the set of sample data X; gives no
information about parameters @, of the other category «@;,
then we can deal with each category independently.
Therefore, the category-conditional pdf is written as f(x|gp).

Suppose that X = Xy, .- .,%, }is a set of sample data
drawn independently according to the pdf f(xlg). The
likelihood of ¢ with respect to the set of sample data vectors
X is defined as follows: '

FXle)=Trexle) 231
k=1

The likelihood f(X|g) is the probability that the set of
sample data vectors X is drawn based on the values ¢. The
maximum likelihood estimate of @ is the value ¢ which
maximises the likelihood f(X|@). This estimation method is
called the maximum likelihood estimation method.
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Since the logarithm function increases monctonically,
the value ¢ that maximises the log-likelihood also
maximises the likelihood. If £(X i) is differentiable by ¢, ¢
can be found by classical min-max theory (see Section 2.5);
computing its partial derivative and setting it to zero.
Therefore, the log-likelihood is:

Hp)=logf(X|g)

® (2.3.2)
= 2 logf(x;] @)
k=1
and its partial derivative is:
N
FMNM L= mh logf(xs| )
m =
b= (2.3.3)

where @, is the mth component of the parameter ¢.

Example 2.3.1

The Gaussian pdf, as will be discussed throughout this
book, is one of the most popularly used pdfs. The
univariate Gauseian pdf is given as follows: .

1 (x - B
/\M.ﬂ a2 242

where u ia the mean and o? is the variance. The
multivariate Gaussian pdf is:

1
(x)=
\. mwﬂvaxu_M_:m
where X is a d-component column vector, u is the d-
component mean vector, 3 is the d-by-d covariance
matrix, (E—u) is the transpose of x—p, 271 js the
inverse of 3, and | Z}is the determinant of =z - :

flx)= exp|— (2.3.4)

mxc_l Hx—p)yE-Yx- .5— (2.3.5)

We show here the maximum likelihood estimates for the
univariate Gaussian pdf Eq. (2.3.4). The parameter P is
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(#, o%). The log-likelihood of Eq. (2.3.4) for one data
value x; is:

logf (x| @)= — 4log2no?— .wwﬂc: —-p) (2.3.6)
and the partial derivative of the above expression is:
dé _1
w.ﬂ?mw?» lp)= ﬂmh* —p) (2.3.7
a 1, (—pp?
-~ =—— 4
da? ogf(uil@) 202 20!

By summing over all sample data values % and equating
to zero, the following expressions are obtained.

o 1
Mlﬂgl.&”o (2.3.8)
k=1 T
n 1 L] AR__mlu.—hum
..Mu“_ o? »M“u_ ot

Finally, we obtain the following maximum likelihood
estimates for # and o’

A= m. MH& . (2.3.9)
A
&=L Ve,
Reoy .

In the multivariate Gaussian pdf, the same discusasion is
applied and the following maximum likelihood estimates
are obtained (see Example 2.5.1): - :

L]
=L ¥y (2.3.10)
U T

L2 ) o
RPN R -
= .
The above Eq. (2.3.9) and (2.3.10) indicate that maximum
likelihood estimation provides the uaual definition of
mean and variance in Gaussian pdf, .



24 j CHAPTER 2

24. Parametric Unsupervised Learning [5)

In Section 2.3, we discussed a method for estimating
the probability ‘parameters of a category-conditional pdf,
using labelled sample data. In practice, the information
about the category is usually unknown. We will here
investigate, with unlabelled data, unsupervised learning
methods. In particular, one of the most important maximum
likelihood estimation techniques, the EM algorithm, will be
introduced.

24.1. Mixture density estimation

On the assumption that the data can be modelled as a
mixture of pdf, the maximum likelihood estimation can also
be used to learn Parameters of the mixture pdf As it is not
known from which category a data sample x is drawn, it is
possible to first select a category w; with a priori probability
Pr{w;), and then select the data according to the category-
conditional pdf f(x|w;,@;). Thus, the probability density
function of the sample data x given the mixture pdf can be
written as follows;

13
felo)= X fxlo;, ¢pPria;) @4.1)
i=1
where s is a known number of categories, ¢=(g,,...,p,).

The conditional pdfs f(x|w;,@;) are called the component
densities, and the a priori probabilities Pr(w;) are called the
mixing parameters. Here, we assume that the only unknown
parameters are @ and the a priori probabilities are known.
For the case where a priori probability is unknown, see
Appendix 1.
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In maximum likelihood estimation, to estimate
parameters @, the likelihood (or the log-likelihood) of the
mixture pdf of Eq. (2.4.1) as well as its derivative must be
computed. The likelihood of the mixture pdf Eq. (24.1) is:

FXlo)= T fxule (2.4.2)

k=1

where X is a collection of the sample data {x,}, k=1,.. ,n.
The log-likelikood is:

Hp)=logf(X|p) n_,Muom)a*_ev (2.4.3)
The derivative of Eq. (2.4.3) with respect to ; is:
Ve, lp)= MLI % M:ak_ek_. 9,)Pr{w;)
' iniflale) %5 (2.4.4)
H*H_H”ﬂmulds (Flxgl @i, @IPr(w)

where Vo, is a gradient operator which is applied to the

scalar and .E.&.:nom a vector of partial derivatives. The
gradient vector can be defined as:

[ al(g)
mea,

Vo lp)=| . . | (2.4.5)

di(p)

0Py _
where @;; is a jth component of the parameter vector ¢;.
Since the a posteriori probability is defined as:
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gl wi, @Pr{w)
Dflxy|wi, @Pr(w,)
i=1

flxe])wi, 9IPr{w;)
flxy|@)

MUN.AELH&-. ﬂ—w”

(2.4.6)

the first term of the multiplication in the summand of Eq.
(2.4.4) is:

1 %ﬁAEN_H». ﬂ»v

Flp) ~ foalor, @oPr(w) @47
Therefore, Eq. (2.4.4) can be rewritten as follows:
z Vo, (flrlw;, 9)Priew;)
v ! - ) .w.|i.
¥ @) ..M_.wle__a.: ¥ flxp]w;, P:)Pr(w;)
{2.4.8)

n :
= D Priw;|x, PV, log(fxs] i, @IPr(w))
k=1
As the a priori probability Pr(w,) is assumed to be known,
the final constraint on partial derivatives can be computed
from:

"
2 Priwlx, P:)Vg, logflxy|w;, @) =0 (2.4.9)
k=1

In comparison with Eq. (2.3.3) (with supervised
learning), Eq. (2.4.9) is the multiplication of the a posteriori
probability Pr(w;)x;,p;} and the partial derivative of log
conditional pdf. This is natural, as we definitely know from
which category the data sample x; is drawn in supervised
learning where the a posteriori probability Priw;|x,,@)=1.
This implies that maximum likelihood estimation in
supervised learning is a special case of unsupervised
learning. On the other hand, in unsupervised learning, the
information from which category the data sample x; is
drawn must be inferred from the a posteriori probahility
using the present values of parameter ¢:; and new values of
the parameter p; can be estimated in the same way as for
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supervised learning. This suggests that, in unsupervised
learning, an iterative method can be adopted. In fact, a
general analytic solution to Eq. (2.4.9) does not exist.

When the a priori probability is unknown, it can be
estimated as above, and the following estimation can be
obtained (see Appendix 1):

w;eunWM?Aeh_ar o) (2.4.10)
k=1

In summary, an iterative estimation method based on
maximum likelihood in unsupervised learning can be
expressed as follows:

(1) Initial estimates of the parameters p; of all category-
conditional pdfs and their a priori probability Pr(w;)
are given. Using these estimates, compute the
@ posteriori probability Pr(w;]x,,p;}) based on Bayes
rule Eq. (2.4.6).

(2) The a priori probability Pr(w;) can be re-estimated
using the a posteriori probability based on Eq. (2.4.10).
The parameter values of category-conditional pdfs can
be re-estimated using the a posteriori probability based
on Eq. (2.4.9),

(3) Repeat steps (1) and (2), until the overall change in
@ posteriori probability between iteration steps reaches
some threshold value,

Example 2.4.1. Application to mixture Guussian pdf

Let us comsider a simple application of maximum
likelihood estimation in unsupervised learning to the two
category case of univariate Gaussian pdf. Each mixing
parameter is Pr(w;) and each component density is
represented as:

1 (x—p)?
flxglw, @)= ﬂﬁu - .Im3+ (2.4.11)
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where u; and 0,2 are the mean and vartance of category
;. The log-likelihood of Eq. (2.4.11) for one data sample
Xy ia:

logflxs| w;,0.) = — Hlog2m 0,2 m“ T -p)? (2419
i
and the partial derivative of the above expression is:
9 =-1 . _
a, wcm\.ﬁ._e:ﬂb[ o (xy—pp) (2.4.13)
d 1 (x — ;)
—=1 P = -
70,7 02 (x| w;, ;) 20 + Ba

Muitiplication of the equations (2.4.13) by the
@ posteriori probability Pr{w|x,, ;) according to Eq.
{2.4.9), summing over all sample data x; and then
equating to zero, yields the following expressiona,

n
Mwleh_a?e_.uhw? —u:)=0 (2.4.14)
k=1 g;
n —_ a2
Mmule.._u*..eb I|.H|m|+ (xy WL =0
k=1 a; a;

Finally, we obtain the following maximum likelihood
estimates for u; and o,%:
"
Mwle_._a?euhn
A=1
a (2.4.15)
Mﬁle_._a?@v
k=1

A=

M“wle_.?r Pl —g2,)?
2_ k=1
6= (2.4.16)

Mwleh_u? ;)
k=1

For a priori probability Pr(w,), the same expression as
Eq. (2.4.10) is used.

Prw;)= Wﬂ Mwlen_a? ;) (2.4.17)
k=1

Iterative estimation follows the atepa (1) to (3) in the
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Previous section. In the case where the Gaussian pdf is
multivariate, the same discussion is applied and the
following maximum likelihood estimatea are obtained (see
Example 2.5.1):

N
M%lew,_n?ﬂuua
k=1

= —
2 Priw|x,p;)
M (2.4.18)
Mhulen._ur (X, — 1) (x, — )"
Mh, = k=1

Mwle_._n? ;)
k=1

2.4.2. The EM algorithm {2-4,9)]

In unsupervised learning, information such as from
which category (class, state) a data sample x comes is
unobservable and only the data sample x is observed.
Observable data are called incomplete data because they are
missing the unobservable data, and data composed of
observable and unobservable data are called complete data,
The purpose of the EM algorithm is to maximise the log-
likelihood from incomplete data, by iteratively maximising
the expectation of log-likelihood from complete data. The
hame of the EM algorithm comes from E for expectation and
M for maximisation. It can be said that the EM algorithm is
a maximum likelihood estimation method, but its
computation is less complex than the conventional maximum
likelihood estimation method described in the previous
section.

In general, suppose that a measure space Y of
unobservable data exists corresponding to a measure space X
of incomplete data. Here, X is easy to observe and measure,
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while Y containge some hidden information that is
unchservable. For example, y mdy be a hidden number
which refers to component densities of observable data x;
and (x,y) becomes complete data. Let f(y|®) and f(x|®) be
members of a parametric family of pdf defined on Y and X
respectively for parameter ®. For a given x€X, the EM
algorithm is to maximise the log-likelihcod of the
observable, real data x, L(x,®) = logf(x|®) over ¢ by
exploiting the relationship between f(x,y]{®) and f(y|x,®).

~The joint pdf f(x,y|®) is given by
fxy|®)=fly|x,®)f(x|®) (2.4.19)

and the following _cm likelihood can be eobtained from the
above expression:

logf(x|®) =logf(x,y|®) —logf(y|x,®) (2.4.20)

For two parameter sets & and ¢, the expectation of
incomplete log-likelihood L(x,8) over complete data (x,y)
conditioned by x and & is:

E(L(x,9)|x,9]=Ellogf (x| )| x,9]
= [logf(x|®)f(y|x,b)dy
=logf(x|®)

HH.AN.@

(2.4.21)

where E[.|x,®] is the expectation conditioned by x and &
over complete data (x,y). Then, using Eq. (2.4.20), the
following expression is obtained:
Lix,®) = Q(&,9) — H(D,3) (2.4.22)
where
Q(P,®) = Ellogf(x,y|®)[x,d)

- (2.4.23)

= [logf(x,y|®)f(y|x,®)dy

and
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H(®,9) = Ellogf(y|x,®)|x,]
= flogf(y|x,®)f(y|x.®)dy

The basis of the EM algorithm lies in the fact that if
Q(®,®)=Q(d,d), then L(x )= L(x,9), since it follows from
Jensen’s inequality that H(®,®)<H(D,$) (4] (see Appendix
2). This fact implies that the incomplete log-likelihood
L(x,®) increases monotonically on any iteration of parameter
update from ¢ to &, via maximisation of the Q-function
which is the expectation of log-likelihood from complete
data. When the random vector y (which is unobserved data)

is a discrete random vector, the @-function is represented as:

_ (x,y| B} —

@3)= 3 LEX® ) 1P | 4.
Q W ol eyl (2.4.25)
This expression is used later, by specifying unobserved data
¥ in vector quantisation and hidden Markov Bomo:_um
reaspectively.

(2.4.24)

The general EM algorithm can be described in the
following way. Given a current ¢ that is a maximiser of
L(x,P), obtain a next appreximation ¢ as follows:

1. Choose an initial estimate .
2.  E-step. Compute @(®,®) based on the given .
3. M-step. Choose P ¢ E.N%aah Q(d,0). Here,

nwmwﬁaa Q(®,®) denotes the set of values © which
maximise OHB o).
4. Set ® = @, repeat from step 2 until convergence.

The EM algorithm is used in applications which permit
easy maximisation of the @-function instead of maximising
L{x,®) directly. H.W such applications, the M-step .
maximisation of Q(P,P) is easily carried out.
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2.4.3. The EM algorithm in multiple data

The discussion in the previous section was concerned
with a single observed incomplete data point x,. To apply it
to multiple observed data X = {x1,...,x,}, the log-
likelihood of the observable data L(x,®) i3 extended to:

n
LX,®) = D, logf(x,|®) (2.4.26)
k=1
The same extension is applicable to Eq. (2.4.20), then

M_om)h*_evn M._omiuru;_@ - M?E..QLN?AS (2.4.27)
k=1 k=1 =1 .

The expectation of the _om-:rm_.mroom of observed data, Eq.
(2.4.21), is:

E[L(X,®)|X, )

n
=E[ X, logf(x,|3)|X,®]
k=1

Ma

, Jiogrxi®) [T riyilx, dydy, - - - y,
. i=1

]

1
(2.4.28)

t A=

logf(x¢|®) [T T fyilx,, ®)dy, - - - dy,
=]

& i{=1

E

= D, logf(x,|®)
k=1

L(X, )

By applying expectation to Eq. (24.27) and using Eq.
(2.4.28), the same expression as Eq. (2.4.22) is obtained.
Here, the Q-function of multiple observed data is:
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Q(D,P)

= E[ X logf(x,,y4|8)|X, 9]
k=1

"

M._._om}n*QL@HHES_!.BKS < dy,
=1

k=1 mwﬁmwv
= DS fvidx®rdy, flogfix, yu B fyalx, #)dy,
k=1]i=k . ) .
= 2108 xp.yel By, [xe, D)dy,
k=1
= 2Q,d,)
k=t
In the same way, H(®,®) is obtained:
H(®,9) = D H(d,3) (2.4.30)
=1

The above two expressions mean that the @Q-function of
multiple observed data is easily obtained by summing the
@-functions of individual observed data. When the random
vector y which is unobserved data is a discrete random
vector, the @-function of multiple observed data is
represented as:

Q(P,9)= D Q:(,P)
k=1 (2.431)

. (X, ¥4 [ D) =
= M .M =2 ¥, @
k=1y, \.Aﬂw_ev ON\AN* u‘k_ )

Example 2.4.2

Let a data sample X, be the observed incomplete date
and (X,y,) be the complete data, where Yy iz an
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unobservable integer between 1 and s, indicating the
number of component density \AH_B#ﬁuL and mixing

parameter Pr(w, ) of the mixture pdf Eq. (2.4.1). Let us

compute the Q-function given in Eq. (2.4.31) for multiple
observed data X = {xy, . ..,x,} and multiple unobserved
data Y = {i,...,i,}. We assume that s parametric
family of mixture probability density functions is given
and that a particular ® is the parameter value to be
estimated. A log-likelihood of ome complete data point
(X;,¥,) is obtained as:

fxeys | ®)=Pr(w, )f(x:|w,, 9, (2.4.32)
A log-likelihood of one incomplete data point X, is:
Foxul @)= f el )= XPr (@ sy, @0 (54 59)
n Ya

Therefore, @ posteriori probability Pr(y;|x, ®) is
£ (%30l D)
Flxe|®)

Priw, )f(xp|w,,.9,)

WﬂQ»_Nk.Avv"

2Pr(w, )f Xl ey, 9y, (2.4.34)
¥

Hhuler._u?eﬁu

By inserting Eq. (2.4.32) and Eq. (2.4.34) into Eq. (2.4.31),
the @-function is obtained as:

Q(0,0)= Y, Q,(®,5)
k=1

QY N A D) —
M I..WAI.NM_A& —QN\.AH»Q»_QV (2.4.35)

k=1y,

I

n
_"M M..wlsus_u?ﬁbzomwlsu;vlua_Eu...ﬂ.bu
=1 u__k

Since the summand is summed over all y; (1 =<y, <s), ¥,
does not depend on k., Therefore we denote y; by i.
Dividing the log term into two log terms, the following
expression is obtained: :
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Q(P,0) = 2 i Priwixi,pillogPriw)  (2.436)
i k=1

+ M.. Mmzeh_nfeu_ﬁnﬁ_e_..m__v

£ k=1

Maximisation of the @-.function is obtained by
maximising each term in Eq, (2.4.36) for each { with
respect to Pr(w;) and ¢;. From the second term of Eq.
(2.4.36), maximisation is obtained by setting the partial
derivative to zero: .

n
Mmle,__nre%ﬂ_omnr_e...m.._vn 0 (2.4.37)
k=1

This i the same as Eq. {2.4.9) which is the maximisation
condition of log-likelihood of incomplete data, shown in
Section 2.4.1. From the first term of Eq. (2.4.36),
maximisation is cbtained as (see Section 2.5):

- Priw)= 1 Mm.wme_._n» 2P (2.4.38)

L T

We can arrive at the same maximisation solution by
maximum likelihood estimation and by the EM algorithm.
It is easily understood that the EM algorithm is more
general than maximum likelihood estimation directly
applied to the log-likelihood of incomplete data, since the
EM algorithm can provide the §-function which implies
the log-likelihood of complete data.

2.5. Min-max Theory [6-8]

In both maximum likelihood estimation and in the EM
algorithm, maximisation operations are inevitable. Min-max
theory is a traditional extremisation method .uﬂxmmmq\ used in
many application fields, In this section, min-max theory for
unconstrained optimisation and equally constrained

optimisation are described.
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2.5.1. Optimisation - univariate case

Consider the maximisation of the univariate objective
function f(x). This problem is solved by searching the local
maximum of f(x) and its associated point x,,. The definition
of local maximum is given as:

flxy)—flx)>0 (2.5.1)

where x is the uomwrcccnrcan of a local maximum point x,,
within a small distance Ax. In order to search the local
maximum, a stationary (or critical) point x, is searched at
first, since local maximum points, local minimum points and
saddle points cerrespond to the stationary points. The
stationary point is defined as the point where function f(x)
does not change within some range. Therefore the total
derivative df(x) is zero at the stationary point. Then,

df(x) —0
dx

.at x=g, (2.5.2)

To discriminate between local maximum point, local
minimum point and saddle point, the second order and the
third order derivatives of f(x) must be considered. If the
second order derivative fP(y) satisfies the following
condition:

x>0 (2.5.3)
it is said to be a local minimum. On the other hand, if
Py <o (2.5.4)

then it is a local maximum. This becomes clear when the
Taylor series expansion of f(x) is considered:

AxfMix)

11

Az’ fx,)  (Ax)3Fy,)
T eyt

Since x, is a stationary point, f(x,) equals zero, and from
Eq. (2.5.5) it follows that

flx, +Ax)= flx,) + (2.5.5)
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(Ax)*fP(x,)
2

In the case of Eq. (2.5.4), the right-hand side of Eq. (2.5.6) is
always negative independent of the sign of Ax, then

fx,)— flx, + Ax) >0 (2.5.7)

It follows directly from the definitions given in Eq. (2.5.1)
that f(x,) is a local maximum. The condition of local
minimum is shown in the same way. For the saddle point,
f®(x,)=0, then from the Taylor series expansion,

(Ax)Pfz,)
3!

If fx,)#0 then the stationary point x, is neither a local
maximum point nor a local minimum point.

(2.5.6)

\AH..TPHVI.MAHLR

(2.5.8)

flx,+Ax)— flx,)=

In summary, the local maximum or Iocal minimum is
computed by searching for a stationary point by equating the
first order derivative to zero, and then deciding its type by
examining the second order or the third order derivative,

2.5.2. Optimisation - multivariate case

In the same way as for the univariate case, the local
minimum, local maximum and saddle point in the
multivariate case can be defined. The Taylor series
expansion of f(x) for vector x is given as follows:

Ax'Vf(x,) Ax'Vif(x,)Ax

f(x, +Ax)=f(x,)+ T + 5 {2.5.9)

where V/(x) is a gradient vector whose elements are partial
derivatives of f(x) with respect to the elements of the vector
X =(x1,x3,...,xz}*. Then

Vix)=ffaxy, . . . af foxy)t (2.5.10)

The V2f(x) is the Hessian matrix whose elements are the
second partial derivatives of f(x) with respect to the
elements of the vector x.
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The stationary point is defined as the point where the
function f(x) does not change within some range. Therefore
the total derivative df(x) is zero at the stationary point, We
know the following relationship between total derivative and
partial derivative.

d
df(x)= Mmmwlu&,. (2.5.11)
i=1 f

Therefore, if the total derivative df(x) equals zero, all the
partial derivatives must be zero. This leads to the condition
that, if x, is a stationary point, Vf(x,)=0. Local minimum
points and maximum points are defined by using the sign of
Ax‘V3f(x,)Ax as in the univariate case.

As an example, let us consider maximisation of a
multivariate Gaussian pdf with respect to its mean vector I
and covariance matrix 3,

Example 2.5.1

The multivariate Gaussian pdf of a continuous randem
vector X is given:

_ 1 -1
ZAN.t.lemy&ﬁM_E muw_lwﬁnltunm ?IE_ (2.5.12)

The maximisation starts with finding the stationary
points; then the gradient vector is set equal to zero.

VNEZp,2=Nxp2)E x—p)=0 (2.5.13)
VNG p,Z) = 4N (x,, ENE - (x — p)x — 1)) =0 (2.5.14)

These expressions are used in Sections 2.3 and 2.4 to
derive the estimated parameters y and .

To prove Eq. (25.13) and (2.5.14), the following three
expressions are uaeful.
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(1) V(bAb)=Ab+A'Db (2.5.15)

where A and b are a d-by-d matrix and d-dimensional
column vector. Eq. (2.5.15) is easily shown by taking
partial derivatives with respect to element b; of the vector

b.

) Ty AP
. (2.5.16a)
= MQF_. m‘..., + Mm:ﬁ..b = _”xﬁ—u +A um-”__w
i i

where [.]; denotes the ith element of the vector
Ab+A‘b. When the matrix A is symmetric, Eq. (2.5.15)
is:

Vo(b'Ab)=24b (2.5.16b)

(2) Vab'Ab=Dbb’ (2.5.17)

This is shown by taking derivatives with respect the
element a;; of the matrix A.

!.wt—.u_&_uulmiMM“?acﬁ
(2.5.18)

= @-&... = H—u—uuuh. J

where [.]; ; denotes the matrix element of the ith row and
Jth column.

(3) V4lA|=A YA 2519

To show the above expression, the following definition and
rule are used{11].

_\P_ ”ﬁn:\&.;n_. L +QC..»¢+ e +Q..Rn#-.& (2.5.20)

|af-t=]AY (2.5.21)

where |A] is the determinant of matrix A, and A;; is the
(£, J) cofactor. From the definition of |A|, it can be said
that the cofactor Ay does not include the element a;; for
all &, Therefore

2

kﬁ H}-..” LL.OG i M.m‘ww
mﬂc._ _ fi £ _.H_L__ { )
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where A . is a cofactor matrix whose (i, j) element is the . L=ogxtagn - tax it tayx,_(2526)
cofactor A;;. The following relation between determinant

. . The error between estimated value %, and the realised
and cofactor matrix exists: 4

value x; is as follows:

A Al =|Al (2.5.23) M
where [ is 8 unit matrix whose diagonal elements are all mﬂﬁnnlbuﬁlnnpnmﬁl (25.27)
unity and whose off-diagonal elementa are all zero. )
Inserting A of Eq. (2.5.23) into Eq. (25.22) and Therefore the mean square error is:
assuming symmetry of the matrix A, Eq. (25.19) is
obtained, . : : Ele)=El(x,~ MQ.&TME (2.5.28)
: . o . i=1
Eq. (2.5.13) is derived using Eq. (2.5.15), giving - where E[] is the expectation over time . To obtain
. ﬂv?AN.FMVH\ZAH‘?MZ-_AI.wANItVuMLANI.EV _ optimal parameters {a;} which minimise the mean square
-1 (2.5.24) : error, the gradient vector of Eq. (2.5.28) with respect to
=N(x,u,2)E (x—mw . J {1 =j=p) is set equal to zero, then
and Eq. (2.5.14) is derived using Eq. (2.5.17), (2.5.19) and : F
(2.5.21}, giving _ m|nfh_xhnl ax;_ )% (2.5.29)
' i=1
Vo N(x,pu,Z) (2.5.25)
=N DV g (- Hx— ) E " x — ) u,ﬁamq_uM.q__ﬁ.f:fL

+N(x,u, D) E[MV,_ (|2 -H
. M "IN.m-_uhnnamI%u.._'NMQ_.@_”HnI-.Nhl%H”Q
N, D)X — p)(x— p)f + 4N (x,, 5| (Ve f=7Y _ =1
: : The expectation is computed over ¢, giving

NP, ENE — (x— p)(x— p)) _, (

N-1
H X
N?Tra?..;”ﬂ M"aT__HT.‘ (2.5.30)
£=0

The expectation is called the auto-correlation as a function
of the distance }i — j| between two data points. We denote

Let us consider, as another example, the problem of ; the auto-correlation here by rij and, in the special case, by
minimising mean square error. This problem is to minimise ! rj when i=0. From the definition, ry=r;. Then, Eq.
the expected square error between estimated value and the (2.5.29) is represented ae: .
realised value. |

M?ﬁc”ﬂ (2.6.31)

¢ i=1

The above expression is known as the Yule-Waker
equation and the parameter a; can be found, by using the
Example 2.5.2 : auto-correlation ry; and r; which can be computed from
: data AHHL.
Suppose that the time sequence of data {x,} is given, the
linearly estimated value at time ¢ from the past p data is
given aa:
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In speech signal Processing, the optimised parameters
(—a;} are called linear predictive coefficients, and are used
as feature vectors (input data) in speech recognition (see
Section 3.1.3).

2.5.3. Equality constrained optimisation

In this section, an objective function f(x) with the
following equality constraint is considered.

fim)=c (2.5.32)

where ¢ is a constant. The most straightforward solution for
this problem might be to express the clement x; in terms of
other elements and substitute this into the objective
function f(x), and then unconstrained optimisation might be
applied. However, in general, it is difficult to express
explicitly the element x; by other elements. Instead, the
Lagrange method can be used to solve this problem
efficiently.

For x ta be a stationary point, the total derivative must
be zero.

d
df(x)= M«ﬁh&m =0 (2.5.33)
i=1 i
The {dx;} are not independent, but they are related through
the total derivative of constraint Eq. (2.5.32).

d
dfx)=, mmmww%__ =0 (2.5.34)

i=1

Here multiplying Eq. (2.5.34) by a parameter A and adding
to Eq. (2.5.33), gives

d
3
d{f(x) + Af1(x) = Mﬁmﬂuﬂuw + Tm%u&,_ =0 (2.5.35)
i=1 i i

The above expression leads to the new constrained condition
for a stationary point as follows:
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L
QL@ N, o (2.5.36)
dx; dx;

The parameter A is called the Lagrange multiplier, and a
stationary point is obtained by extremising the following
far [ under the equality

fuX)=F(X)}+Af (x) (2.5.37)

For multiple constraints fi(X)=¢; U=j=n), Eq.

(2.5.35) is extended using multiple Lagrange multipliers as
follows:

AU + D\, fi(x) (2.5.38)
i=1

d L]
= S 3fx) S e -
.,.Mﬁ ax; +L_Mny. oy =0

Then, the following augmented objective function
n
fR) =@+ ZAf(x) (2.5.39)
Ji=1"

is to be extremised. Let us consider an example of a case
with a single constraint.

Example 2.5.3
~M. ¢i>0, i=12,.,C, and is subject to the constraint

MHMHH. then the objective function

i=1
Cc

flx) = M“nﬁ.uomaﬁ.
L=l

attains its stationary point when .
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Ste, (2.5.40)

The proof for the above comes from extremising the
following augmented objective function

C
fo=F@)+A D, (2.5.41)
i
Equating the partial derivative of fa to zero with respect
to X;
n.
——A=0 (2.5.42)
i

) C
Multiplying by x; and summing over { gives VHMP.,
hence the result is obtained, _

Let us further comsider an example of a case with
multiple constraints. The following example is called Fuzzy
vector quantisation and is explained further in Chapter 4.

Ezample 2.54
Consider the following objective function
T L
flmy)= M > mfd(x;,z;) {2.5.43)
i=ti=1 :

which is extremised under the constraints
L
filmy)= Pimy=1 (2.5.44)
F=1
Then the augmented objective Jjunction is

T L T L
falm)= 2} MSm&u:&.v + DA, MSQ (2.5.45)
i=1 j=1

i=1j=1

!

Section 2.5, a5
Equating an element of n.rn gradient vector of f, to zero:
ﬁ%u%ﬂ%|_ﬁ?ru&+?no (2.6.46)
We obtain
my; = ( - w__\m.&n:@.uﬂl_ (2.5.47)

From the constraint Eq. (2.5.44) of m i

L 1L 1
Dmy=(~A/F)F1 MG\&M:@.;?H =1 (25.48)
j=1 i=1

Then parameters A, are:
L 1
,|?,uEAM:\&u_..@...-sa-:.

=t (2.5.49)

,.. F
MEMS\&NM.&:T:-:._1:
k=1 )

Substituting the above expression into Eq. (2.5.46), we
have

Lo 1
m{ Vd(x;z)=( D (1/d(x;,z) F-1)"F-D  (25.50)
k=1

Then m;; which is an element of a stationary point is:
1

h\ —
my nﬁMEQ:{\&n:uE F-1y-1 (2.5.51)

The .ﬂe. can be considered as the contribution of data X;
to the reference point 2;, and form the basis of a Fuzzy
clustering technique.

2.8. Information Theory [1]

In pattern recognition, parameters of probability
structure are estimated by maximising the log-likelihood, to
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increase the probability of correct classification of the input
data. Another criterion is mutual information, which can be
maximised, instead of log-likelihood, in order to improve
channel quality between input and output. In this section,
the concept of entropy and mutual information in
information channel is briefly described.

2.6.1. Entropy

When we observe an outcome a;, the infermation
derivable from the outcome will depend on its probability. If
the probability Pr(a;) is small, we gn.mmacm\ a large degree
of information because the outcome which Has occurred is
very rare. On the other hand, if the probability is large, the
information derived may be small because the outcome is
well expected. The amount of information is defined as
follows; .

1
Pr{a;)

For logarithms to base 2, the unit of information is called
the bit. This means that one bit of information is required to
specify what kind of outcome has occurred. In this sense, the
amount of information represents some ambiguity.

I(a;)=log (2.6.1)

In information theory, an outcome a; is called a symbol,
and the sample space S is called an alphabet. In this
section, we use these terms according to normal conventio
The symbol q; is produced from an information source wit
alphabet S, according to the probability of the symbol. The
important property of an information source is the entropy
H(8) which is defined as the average amount of information
as folows:

H{(S)= 3.Pria)l{a,)
S

-,
B
v

1 (2.6.2)
= M&uln__u_cmg
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Where, M indicates summation over all symbols on

s
alphabet S. This entropy H(S) is the amount of information
required in specifying what kind of symbol has occurred on
average. It is also the averaged ambiguity for the symbol. In
coding the symbols, entropy H(S) is the lower limit of
averaged code length necessary to transmit the symbola,
This is called Shannon’s first theorem. If the entropy
increases, then ambiguity increases, therefore a large
amount of information is required to specify and transmit
the symbol.

2.8.2. Mutual information

‘Here, we consider transmission of symbols through an
information channel. Suppose the input alphabet is A ={a},
i=12,.r and the output alphabet is B={b}, j=1,2,..s,
then the information channel is defined by the channel
matrix M;=Pr(b;le;}, where Pr(bjla;) is the conditional
probability that cutput symbol b; is received when .input
symbol ¢; is sent. Figure 2.6.1 shows an example of an
information channel.

Before transmission of a symbol a;, the average amount
of information, or the ambiguity of the input alphabet A is
the a priori entropy H(A).

- TMog_ L
H(A)= w“w%_u_om Fria) (2.6.3)

where Pr(a;) is the a priori probability.

After transmission, for the observed symbol b;, the
average amount of information, or the ambiguity of the
input alphabet A, is reduced. to the following a posteriori
entropy.

_ 1
H(A|b)= M??._ﬁ_cm.clé iy (2.6.4)

where the Pr(e;|b;) are the a posteriori probabilities.
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Pafbafba| - |- | |- |1 |bs
Sda WS slis|loio|lolol o /5] 0 |1/
[ .
njd32{ 0012|018 0|0 [14] 0 0 |1/8
p
ujlagj6lojo|ojololo |2 0 |/6| .0
ﬂ -
a
1
a
b
e
t
apj0rojojyofoflololojo 1/2{1/2

Figure 2.6.1. Example of information channel.

Averaging the a posteriori entropy H(A[b;) over all
output symbols b; leads to the following equation:
H(A|B)= D Pr(b)H(A|b))
B

— . R . H
|W»c1.€Mwla__€am Pralty E.m.g

1
wﬁﬁﬁ,m_&;ﬁu

= Mw_ﬁlnrﬁ.ﬁoﬁ

This conditional entropy is the average amount of
information, or the ambiguity of the input alphabet A
required in specifying the input symbol, after observing an
output symbol.

Mutual information is defined as the reduction in
ambiguity, in other words, information obtained through a
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channe] by observing an output symbol.
I{A; B)=H(A)-H(A|B)

o1 blog— L
= whuln_v_om wln_,v Mwwlnrﬁcﬁom wln_._&.u

_\v - Blog— b
= Mwwlncg_ow Priay
: 1 (2.6.6)
- .W m._@. ,— .
MM r(a;,b;)log Fria.|b)
Pria;|b)
M M%lnh .Szowﬂﬂ

Vﬂmﬁ?&;ﬁu
2. XPriayb,)log Pria)Pr(b)

If the information channel is noiseless, the input symbol can
be specified definitely by observing an output symbol. In this
case, the conditional entropy H(A|B) equals zero. Therefore,
we can obtain the maximum mutual information
I{A; B)=H(A). In the general case, the information channel
is noisy so that the conditional entropy H(A|B) is not zero.
Then, maximising the mutval information means (if the
channel matrix can be tuned) obtaining a low noise
information channel, offering a close relationship between
input and output aiphabet.

2.7. Summary

This chapter has introduced some of the fundamentals
of statistical pattern recognition. The basic concept in
statistical pattern recognition involves probability theory
and Bayes decision theory as these are essentially based on
probabilistic decision making with a priori and e posteriori
knowledge of the patterns. The most important problem in
pattern recognition is how to obtain the a posteriori
knowledge from given examples. Supervised and
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unsupervised methods to estimate the category-conditional
probability density function of the patterns have been
described. In particular, the EM algorithm, owing to its
elegance in formalisation of iterative learning, has been
described in depth \g comparing it with the traditional
maximum likelihood “eatimation. Finally, a brief review of
information theory has been included, since such concepts
are essential to the acoustic-phonetic and acoustic-language
modelling presented later in this text.
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CHAPTER THREE

BASIC TECHNIQUES FOR
SPEECH PROCESSING

The task of speech recognition is to recover a linguistie
message which is encoded as the acoustic speech signal of an
utterance. Various systems and methods have been
proposed, tested, and abandoned: that is the history of speech
recognition over the past fifty years. Advances in computing
technology, the availability of extensive, characterised
speech databases, and the creation of powerful new
statistical algorithms have renewed interest in the field. A
typical speech recognition system will consist of three major
components: signal processing, acoustic pattern matching,
and language modelling. In the signal processing stage, a
speech signal is converted into a sequence of information-
bearing analysis frames. The acoustic pattern matching
stage then interprets these frame sequences into possibie
linguistic units, usually words. The language modelling
stage determines valid linguistic words or sentences. It
should be pointed out here that these components may well
not be separable in practice, especially in HMM-based speech
recognition systems. This chapter presents some basic
knowledge required to understand speech recognition
methodology. The description does not cover all topics, but is
restricted to those which are essential for understanding the
following chapters,
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}
d.1. Bpeech Signal Processing

The purpose of signal processing is to derive a set of
parameters to represent speech signals in a form which is
convenient for subsequent processing. Both time domain and
frequency domain approaches can be used [34,84]. Time
domain approaches, such as parameters of energy and zero
crossing rate, deal directly with the waveform of the speech
signal and are usually simple to implement. Frequency
domain approaches involve some form of spectral analysis
and usually involve characteristics that are not directly
evident in the time domain. These are the most widely used
signal analysis techniques in speech recognition.

Associated with 2 given signal analysis method is a
distortion measure which calculates the distortion
(dissimilarity) between two specific speech frames. In
statistical modelling, the distortion measure is actually
based on the probability density function created from a
large number of characterised speech frames. 'Various
techniques of signal processing and feature extraction for
speech recognition have been reported. Most of these
techniques highlight reliable and tractable representations’
of speech signal spectra, notably those based on linear
predictive coding (LPC) (4,49,69,84] analysis and those
based on short-time Fourier analysis [25,84].

3.1.1. Short-time Fourier analysis

Short-time Fourier (spectral) analysis is a method for
analysing time-varying waveforms in the frequency domain.
Components of the speech asignal are time-varying at the
articulator rate, so the speech signal is suited to short-time
analysis. A number of fundamental concepts and definitions
of short-time Fourier analysis can be found in [34,84], and
details of a typical speech recognition system based on
short-time Fourier analysis can be found in [53].
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Short-time analysis depends on windowing of the
speech signal to isolate a short-time interval for spectral
analysis. The short-time analysis interval is called a frame,
and the length of the frame is called the frame length. The
windowing proceeds along the time axis by shifting an
appropriate interval to represent the temporal dynamic
feature. The shifting interval is called the frame interval.
The role of windowing is to Prevent an abrupt change at the
end points of the frame by attenuating the amplitude of the
speech signal, as well as to represent temporal dynamic
features. The windowing is carried out by multiplying the
speech signal by an appropriate window function, and the
results depend on the properties of the specific window
function employed. ’

Let a continuous speech signal be denoted s(t) and the
window function by w(¢— 1), then the signal after windowing
is given as:

1) =s®w(t~7) (3.1.1)

where r is a time when the window is applied. x(¢,7) is a
_signal as a function of time ¢ with the window position 7.

———

Short-time Fourier analysis is carried out on the signal
x(¢,7) by the Fourier transform. The Fourier transform is a
mapping function from time domain to spectral domain, and
its formula in continuous frequency is defined as:

Xjon= .—.R_”u,iml....cha‘m (3.1.2)

uarm—,m w=2xf is radian frequency. The corresponding
Inverse Fourier transform, which is a mapping function from
spectral domain to time domain, is defined as:

B H L] . - | . .
x(t,m)= o JXGone“da (3.1.3)

L

Since, in practice, the continuous time signal x(¢,7) and
its spectrum X(jow,r) are quantised - by sampling -and
digitising for computer processing, techniques of digital
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signal processing are mainly employed. Suppose that the
continuous signal x(¢,7) is sampled at a sampling period of T
seconds, the discrete sampled data results in X4 i, where &
and i indicate discrete time and i corresponds to the time
when a window is applied, like 7 in the continuous case.
The corresponding discrete Fourier transform of a discrete
sample sequence {x, ;} is defined as:
N-1
Xui= Xz eft/Nyhr (3.1.4)
N =T
where N is the number of sampled data to be analysed
(frame length). The inverse discrete Fourier transform is
defined as:

N-1
= S X, (2N (3.1.5)
zaﬂo ’

A fast algorithm for computation of the discrete Fourier
transform is called an FFT (Fast Fourier Transform) and is
normally applicable where N is a power of 2.

An interesting question invelves the relation between
frequency resolution and time resolution. The time
resolution indicates the number of data samples to be
analysed (frame length). Since frames with short frame
length can represent rapidly changing dynamic features,
high time resolution is obtained by shortening the frame
length. On the other hand, frequency resolution limited by
the frequency step Af is defined as:
1
NT
where N is the frame length and T is the sampling period.
The above expression is easily obtained by comparing Eq.
{3.1.2) and (3.1.4), setting kT —¢ and n/NT—-nAf—f. From
Eq. (8.1.6), it is clear that long frame length N increases
frequency resolution Af and decreases time resolution. Short
frame length increases time resolution and decreases
frequency resolution.
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Example 3.1.1

The functions sinc and rect are defined by

1, ifx=0

sinclx)= sin(x)/x, otherwise

(3.1.7)

1, if jxf=1

0, otherwise (3.1.8)

rect(x)=

The inverse Fourier transform of rect(2w/w;) is shown to

1 . wy .
be T nnalml; Starting from the inverse Fourier

transform of rect(2w/w,), the following expression is

obtained:
17 :
o Jreet@osagedo (3.1.9)
Ea_\m
_ 1 ; 1 Jugtf2 o tls
—_—_ &gcu.& — e o
2w rm-ﬁ-_\u @ ma.....mﬁa ¢ )
. W
I EDT%‘S 3 @
=1 — ginef 0
T @ = m._m::g 9 t)
2!

Bandpass filter analysis methods can be considered as a
special form of short-time Fourier analysis {84], and such
bandpass filter methods have been widely used in speech
recognition [18,25]. The bandpass filter system may use a
variety of different frequency spacings [25,26,107], and use
of frequency spacing defined from auditory modelling, such
as mel-scale, or bark-scale, may improve system performance
in terms of recognition accuracy,
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3.1.2. The z-transform [84,39]

The z-transform plays an important role in the analysis
and representation of discrete-time systems. Many properties
of a discrete sample sequence can be well observed after a z-
transform representation. Consider the discrete sample
sequence denoted {x,}, then its z-transform is defined as:

X(z)= 3 xz* (3.1.10)
k= —00

where z is 2 complex variable. The window function is not

considered here for simplicity. The continuous spectrum may

be obtained by letting z=¢/*T. This can be roughiy

explained by modifying Eq. (3.1.4) as follows:

N-1

X, = M 1y (/27 TINT) =k
k=0

o (3.1.11)
= M #??JL

£=0
where w=27n/NT =2wnAf. If the frame length N becomes
large (to infinity), Af=1/NT will be unlimitedly small as
discussed in the previous section, and F=nAf becomes
continuous. Therefore, it can be said that the z-transform
Eq. (3.1.10) is the mapping function from the discrete sample
sequence {x,} to the continuous spectrum.

The corresponding inverse z-transform is defined as:

L [X(2)2*1dz (3.1.12)

Hk:lm.alﬂun

where ¢ is a circular contour centered at the origin and lying
in the region of convergence on the z-plane.

Example 3.1.2

Here we will show why the z-transform can convert the
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discrete sample sequence to the continuous spectrum. The
sampling theorem tells ua that the continucus signal x(¢)
is completely represented by the discrets sample sequence
{z:} under the condition that the sampling frequency 1/7T
is twice the highest frequency contained in the continuous
signal x(¢). The formula of the sampling theorem is:

)= 3 a.e..ﬁ%%:#g (3.1.13)
k=-=
where wo=2w/T and sinc(¢) =sin(¢)/t (see Example 3.1.1).

By applying the Fourier transform te both sides of Eq.
(3.1.13), the left side is converted to X(jw) and the

funection mmunﬁr.mhﬁlwﬂb of the right side is converted to:

Jsincl (¢ —kTNe 1wt = | sine(=2x)e 4rdz ¢~IeTh (3.1.14)
In the above expression, we set ¢—AT =x. Using the result

of Example 3.1.1, the above expression is further
converted to:

T rect(2w/wo)e /=T = Tg ~jwTh (lw|=wo/2)  (3.1.15)
Therefore, the Fourier transform of Eq. (3.1.13) ia:

X(Ga)=T 3 xeioTt (fw] = wp/2) (3.1.16)

k=—w

Here let 2z denote ¢/*7, then Eq. (3.1.186) is:

X({fa)=T ¥ xz~* (3.1.17)
k= —m= .
By the definition of the z-transform Eq. (3.1.10), the abave
expression is represented as:

X({w)=TX(z) z=¢loT (3.1.18)

Eq. {3.1.19) means that the z-transform of the diacrete
sample sequence {z,} can represent the spectrum of the
continuous time signal x(¢) which is completely recovered
by the discrete sample sequence {z,}, by letting z=¢/*T,
This advantage of the z-transform enables us to analyse,
in the frequency domain, the behaviour of a speech
processing (filter) which works in the time domain,
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Fourier transforms can replace differentiation with an
algebraic operation. In the same way, z-transforms can
replace differencing with an algebraic operation. Let us
investigate this z-transform property.

Example 3.1.3

Let us consider the z-transform of a linear combination of
discrete signal x,. The problem is to find the z-transform
of the following expression: S

F
e = Mnmhnlm A o ﬁm.H.FwV
) - i=o
where ¢ shows discrete time. By applying Eq. (3.1.10) to -
3.1.19)
= F ] ) )
.@ANVH M M-ﬂhH_I-,Nrn ﬁ@.H.NOv
t=—m (=0

Here, setting ¢t —i =k,

P
E(z)= MD.? M HrNI_J_NIn

i k=== -

]

Am_..H.mC

az ' X(2)

M'u

i=0

The above expression indicates that the discrete sample
sequence {x;_;} is converted to the z-plane in the form of
X(z)z™' by the z-transform. Therefore the time delay iT

is represented as 2 in the z-plane.

Convolution iz one of the most commonly used
operations in filtering theory. Convolution in the time
domain is simply represented as an algebraic multiplication
in the frequency domain by the z-transform, S
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Example 3.1.4

The convolution of two discrete sample sequences {x,} and
{es} is defined as follows:

o= 3, x4Cp- (3.1.22)

k= —=

Let us derive the z-transform of the convolution. By
directly applying the z-transform to Eq. (3.1.22),

Yiz)= X Y xiCazz™" (3.1.23)
A=-—w k=_—o
By replacing n — % with i, Eq. (3.1.21) is

Y@= 3 ¥ xez et

i=—w k=—wm

(3.1.24)
=X(z)C(z)
Then, the z-transform of the convelution becomes the

product of two z-transforms of the respective discrete
gample sequences,

3.1.3. LPC analysis [84]

Linear predictive coding (LPC) can provide a complete
description for a speech production model. The basic idea
underlying LPC is that each discrete speech sample, x,, can
be represented as a linear combination of previous samples,
and prediction errors can then be minimised according to the
mean-square value of the prediction error, e;, which is
defined by

e = x, + MP&T_.. (3.1.25)

i=1
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where p is the order of LPC analysis; and a; are LPC
coefficients. The LPC coefficients which minimise the mean-
squared prediction error can be obtained by setting the
partial derivative of the mean-squared prediction error (with
respect to each «;) equal to zero as is seen in Example 2.5.2,
The linear equation (2.5.31) in Example 2.5.2 is efficiently
solved by Levinson’s recursive solution methods[69].

For the purpose of understanding the behaviour in the
frequency domain of LPC processing which deals with
discrete speech samples, let us apply the z-transform to Eq.
(3.1.25). From Example 3.1.3, the following expression is
obtained:

E(z)= Mn_& ~X(2) (3.1.26)
i=0
Let us denote H(z) as follows:

E&uQMBNL (3.1.27)
i=90

then Eq. (3.1.26) is expressed as:
X@)=H(z)E(z) (3.1.28)

The spectra of ¢, and x, are obtained by setting 2 =¢/°T,
Since the denominator of H(z) has p complex roots, the
H{e’*T) has p/2 m..mmmmwm.ﬂ. frequencies, which correspond to
formant frequencies. Thi implies that the LPC technique
can model the spectrum of the vocal tract as a spectrum of
an order-p all-pole model H(z). The expression Eq. (3.1.28)
indicates that the spectrum X(z) of discrete speech samples
is produced as the product of the spectrum H(z) of the vocal
tract and the spectrum E(z), which is the spectrum of the
unpredictable signal formed from the past p speech samples.
Therefore the E(2) corresponds to the spectrum of voice
excitation.

Suppoese that the voice excitation is white noise in the
case of unvoiced speech, and an impulse in the case of voiced
speech, so that the spectrum of voice excitation E{z) becomes



)

62 ) CHAPTER3

‘spectrally flat. Under such conditions, the speech spectrum
X(z) equals the spectrum at the vocal tract, so that

X(z)=GH(z) . - {3.1.29)
where G is the gain constant.

The value of p required for adequate modelling of the
vocal tract depends on the sampling frequency used in
digitisation of the signal; the higher the sampling frequency,
the larger the analysis order p should be. It has been
suggested that when the sampling frequency in kHz is n the
analysis order should be at least n +4 [69). Detailed
description of such LPC details can be found in [34,69,84].

From. the stochastic process point of view, “a speech
sample, x,, can be considered as a time series of a stationary
Gaussian process. An N -sample segment of a speech sample,
X=(X 41X 42 - - ;X 4n) (here cis a constant, which may be
assumed to be zeéro for simplicity) can be assumed to be a
segment of a process with a spectral density of the all-pole
rational form. The maximum likelihood method can then be
used to estimate the unknown parameters, {a;}, of the
Process density [49], which result in the same formulation of
minimisation of the mean-square of prediction error over the
period-of time N, L

Maximum likelihood estimation is the most, oou.aaaz_%
used criterion in parameter estimation (see Section 2.3.1),
The purpose is to use the information provided by known
samples to obtain good estimates for unknown parameters.
Intuitively, good estimates should correspond to the value
that in some sense best agrees with the actual observed
samples. The likelihood can then be defined as. s function of
parameters, {a;}, with respect to the set of samples, namely,
Pr(xla). The maximum likelihood estimate of {a;} is then
that value which maximises the likelihood function. From
such a statistical point of view, LPC analysis can be closely
welded into hidden Markov modelling [56,82] to provide a
computationally efficient medel for speech recognition.

Section 3.1, w 63
3.1.4. Cepstral analysis [92]

The basic model of speech production can be considered
as a vocal tract filter H(z) excited by a periodic excitation
function E(z) for voiced speech or white noise E(z) in the
case of unvoiced speech. Therefore shorttime spectra
comprise a slowly varying spectral envelope corresponding to
the vocal tract filter and, in the case of voiced speech, a
rapidly varying fine structure corresponding to the periodic
excitation frequency and its harmonics [84). The observed
speech sample sequence results in a convolution of the
excitation and the vocal tract impulse response in the time
domain, because its spectrum is the product of the excitation
and the filter spectra in the frequency domain as shown in
the previous section (see Example 3.1.4).

E../ in the frequency n—oammuy the product of the
excitation and filter spectrum is transformed to the
summation of these two spectra (logarithm operation), the
transformation from the frequency domain back to the time
domain by Fourier transform results in the cepsérum, which
can represent the excitation and vocal tract separately. The
parameter for cepstrum is called quefrency and is effectively
a (pseudo) time domain parameter. The excitation locates at
high quefrency owing to its periodic high frequency, and the
vocal tract locates at low guefrency owing to its smoothed
spectral envelope. This separable representation is very
suitable to the deconvolution of speech and this analysis is
called cepstral analysis [84,95). In general, this kind of
anelysis which can separate two comvolutionally related
properties into a summation by some transformation is
called homomorphic analysis {84].

There are two types of cepstral analysis: FFT cepstral
and LPC cepstral analysis [6,79]. In the FFT cepstral
analysis, a fast Fourier transform is directly applied to the
speech signal. On the other hand, in LPC cepstral analysis,
the z-transform is applied to the speech signal modelled by
LPC analysis. Here, we will investigate LPC cepstral
analysis, especially in deriving the LPC cepstral coefficients
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from LPC coefficients.

To investigate properties of the LPC cesptrum, the
excitation E(z) and vocal tract filter H(z), in the speech
spectrum X(z), are linearly separated by a complex
logarithm operation applied to Eq. (3.1.28). Then

logX (z)=logH(z) + logE(z) (3.1.30)

The LPC cepstral coefficients ¢, are defined as the inverse z-
transform of the above log-spectrum logX(z). This indicates
that the characteristics of vocal tract and excitation are well
represented separately in the cepstral coefficients. The
higher order coefficients take the excitation property and the
lower order coefficients take the vocal tract property.

Cepstral coefficients, which can also be obtained from
LPC analysis [84], have been widely used in speech
recognition. The cepstral coefficients, c,, of the spectra
obtained from LPC analysis can be computed recursively
from the L.PC coefficients, a;.

n—1

€ = —a, — ——at,.;, n=1 (3.1.31)

where a;=0 when i >p {(p is the order of LPC analysis).

A variety of speech recognition systems using cepstral
analysis have been reported [22,26,62,87]. A distinctive
advantage of the cepstral analysis is that correlation
between coefficients is extremely small so that simplified
modelling assumptions can be applied.

Example 3.1.5

Let us nmw?m Eq. (3.1.31). Since the z-transform of the

cepstral coefficients is equal to the log-spectrum X(2),
logX(z)=C(z) (3.1.32)

where C(z) is the following z-transform of cepstral
coefficients ¢,

-
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Ce)= 3 cz™" (3.1.339)
A=—m
To teke out the logarithm operation, the derivative of Eq.
{3.1.32) is computed with respect to z 7%
0Xlz) _ x(z)3C) (3.1.34)
dz7! az
Here, the speech spectrum X(2) is modelled by the all-pole
model with LPC coefficients a;, giving
G G
X(z}= =
e , Lrla) (3.1.35)
Doz
where Zr denotes the ztransform operation on the
sequence inside the parentheses, and a;=0 ﬁrwu i ia
negative or greater than the order p of LPC analysis. The
derivatives of X(2) and C(2) are:
aX(z) 0z X jaw _ —GZliaye
' = ) B Zr(m))?
(Y az79)? (3.1.36)
i=—m
MOMN_U =z 3, ne,z "=Zrlnc,)z
2 a=-—=
By substituting Eq. (3.1.35) and (3.1.36) into (3.1.34), the
following z-transform equation is obtained;
Zr(nc.)Zr(a)+ Zelia) =0 (3.1.37)
By applying the inverse z-transform to Eq. (3.1.87), the
relational equation between LPC coefficient &; and LPC
cepstral coefficient ¢, ia obtained. The first term of the
above equation is the product of two z-transforms, so it is
represented in the convolution form by applying the
inverse z-transform.
n—1
X ain—id, . +na, (3.1.38)
i=0

n—1

= ¥(n-Dac,i+na,+nc, =0

Finally, ¢, is represented as;
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n-1

€ =~y — :Man.ﬁaa: n=1 (3.1.39)
=1

where a; =0 when i >p.

3.1.5. The distance measure [92]

The distance measure, also known as the distortion or
dissimilarity measure, between two speech frames has
Played a key role in speech coding, analysis, and recognition.
In order to discriminate spoken phonemes or words, the
distance between templates or prototypes and unknown
input frames must be defined, and we would like the defined
distance to reflect the physical spectral distance. Several
studies have been conducted to investigate the properties of
distance measures from both theoretical and practical points
of view [40,41,78). The most widely used distance measure
in speech recognition is the LPC cepstral distance, owing to
its direct correspondence to spectral distance and the
computational simplicity of LPC cepstral coefficients given
by Eq. (3.1.31).

Example 3.1.6

The LPC cepstral distance can be shown to correspond to
the distance in the spectrum,

Power spectrum is defined as the power of the spectrum
X(z2) at z=¢/oT

Power spectrum =|X(2)|? (z=¢/*T) (3.1.40)

Log power spectrum is defined as the log of the power
apectrum. The difference between two log power spectra
of template frame y and input frame x is;
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‘

d=log|X(2)|*—log| Y (2)? (3.1.41)

On the basia of the above definition, the spectral distance
ia defined as:

T w/T

L= didw (3.1.42)

2% l.,_”a. . .
where the lower and upper limits of the integral are
decided according to the sampling theorem. The sampling
frequency 1/T must be twice the highest frequency
contained in the speech (2f<1/T). Then :

T sw=2nf=< T
Our purpose is to show that the spectral distance L
corresponds to the LPC cepstral distance (Euclid distance
in LPC cepstrum). :

(3.1.43)

L= (ci—c})® (3.1.49)
A= —@
where ¢ and ¢] are the nth cepstral coefficients of the
input frame x and the template frame y.

To prove Eq. (3.1.44), the ?:.u.imum expression is used on
the baais of complex logarithm.

log| X (z)| =RellogX (z)) : (3.1.45)

where Re(.) indicates the real part of the complex
varigble. The above expression is shown by substituting
the complex variable z=e"*/f From Eq. (3.1.32), the z-
transform C(z) of the cepstral coefficients ¢, ia equal to

the log-spectruin X(z},
logX(2)=C(2) (3.1.48)
The difference d between log power spectra is: .
d =log[X(2)|?—log] Y (2)|? - {3.1.47)

- =2Re(logX (2} — logY (2))

=2Be( 3 (ci—eDz™"  (ci=cl=0,if n<0)
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= X ei~chz™  (ci=c%,, cl=¢’,)

A=—m

The spectral distance L {Eq. (3.1.42)) is given by:

Sy |

_T
L= ) d’de (3.1.48)

il

T © < . _
Hﬂ M M ﬁﬂw|n“vﬁ0u-|0w.v QI..’_H.;IB_&NS

..,:. oy

= 3 (ct—~e2?

Other distance measures may also be defined by
exploiting the ratio of power spectra, such as .

M\ANU 2 — —d
X)) ¢ (3.1.49)

where d=log]|X(2)|®—log|¥(z)|®>. The maximum likelihood
distance (Itakura-Saito distance) ig defined as:

nmu.”

E=L f@+ei-1)dw (3.1.50)

The maximum likelihood distance weights linearly, when
d>>0. When d<<0, the distance weights exponentially.
The cosh measure is defined as:

b Y L]

D= J (d+e ?—1)+(=d+e?—1))dw (3.1.51)

3|4
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T

= [ (e?+e ?—2dw
x
T

This distance measure is devised to guarantee symmetry
with respect to d.

The distance measure can generally be replaced by
employing a continuous probability density function, in
which the larger the density, the smaller the distance,
because of the uncertainty and randomness of speech signals.
The parameters of a template probability density function
can be estimated from extensive training data, which will
usually lead to a more robust representation in comparison
with conventional distance measures. .

Example 3.1.7

Let us consider the case of the minimum-error-rate
classifier described in Section 2.2.3. In the classifier, input
speech data x (auch as LPC cepstral coefficients) for each
frame are classified into ome of the categories
Pi (1=k=<8), based on the minimum value of the
discriminant functions, The discriminant function is the
o posteriori probability Pr(g,|x) which can be computed
by Bayes rule using a priori probability Prig,) and
category conditional probability density function (pdf}
f(x|@s). Then, the log discriminant function g,(x) of the
category k is given as:

£1(x) =logf (x| ps) +logPrig,) (3.1.52)

Here we employ the most widely used Gaussian density
function as the category conditional pdf. The above log
discriminant function becomes:

()= —Hx— ) 7 Hx— py) (3.1.53)

- mﬁomma —Hog|Zy| +logPrip,)

The above discriminant function g,(x) can be simplified in
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various ways. In the case where the covariance matrix X,
of each category ia pooled irrespective of the category, and
the a priori probability is the same for all categories, the
discriminant function deteriorates to the following
function:

&e(X) =(x— ) T (x—p,) {3.1.54)

where Z is the pooled covariance matrix. The
discriminant function is the Mahalangbis distance
between the input speech data x and the template u; of
category k. The classification is carried out according to
the minimum value of the Mahalanobis distance, In the
cese where the element of d-dimensional vector x is
uncorrelated (statistically independent) and the variances
o are the same, the discriminant munnﬁon/ﬁ_onmlowmﬁnm.ha
the following function; A

EX)=(X~ppXx — p ) : (3.1.55)

The discriminant function is the Euclidean distance
between the input speech and the templates. This kind of
classifier is called a minimum distance classifier.

The Euclidean-like distance measure can be viewed as
a special form of Gaussian density, and parameters suited to
a Fuclidean-like distance measure, such as LPC cepstral
coefficients, can be modelled by a Gaussian density function.

3.2. Acoustic Pattern gwannm

With a given speech representation, aeoustic pattern
matching will detect. and classify possible acoustic patterns,
which can be phonemes, syllables, words, or sentences, from
speech signals. Acoustic pattern matching forms the central
issue in speech recognition research. The most important
progress has been achieved using techniques based on the
dynamic time warping (DTW) algorithm, hidden Markov
models (HMM), and neural networks.

) 7

Section 3.2
3.2.1. Dynamic time warping (DTW)

Dynamic time warping (DTW) [50,85,93), also known
as dynamic programming (DP) matching, was introduced for
non-linear time alignment of speech patterns. DTW can
effectively minimise errors occurring during time alignment
of two speech sequences, and can significantly improve
speech recognition accuracy in comparison to other non-
aligned matching techniques. The basic idea of DTW, non-
linearly stretching or compressing a signal in time, has been
used in various speech recognition systems, including HMM-
based speech recognition systems where it is better known as
the Viterbi decoding algorithm {37,103].

Suppese we are given two acoustic patterns, X, Y,
which consist of a time sequence of short time
representations or 'frames’ of the speech signal.

X = X,X3,...,XT

X

3.2.1)
Y = yu¥2,...¥r

¥

where T; and T, are the total number of frames of X and Y
respectively; and x; for the ith frame of X may be a vector of
bandpass filter outputs, or a set of LPC cepstral coefficients.
Figure 3.2.1(a) and (b) show the two acoustic patterns X and
Y in one dimension as a function of time.

In comparing the two patterns X and Y, three methods
may be considered. The first is to compare them directly
along with the corresponding time, i.e. frame distances
d(x;y;) are computed from i=0 to T, and are accumulated.
For the interval T, <i=sT,, the vector x; is regarded as zero.
Overall distance D(X,Y) results in the hatched area shown
in Figure 3.2.1{c). The second method ia called linear
matching which compresses the pattern Y linearly to match
X and compares them along with the corresponding time as
in the first method. The third is called non-linear matching
which compresses and stretches the patterns X and Y non-
linearly and compares them along with the corresponding
time. The overall distance D(X,Y) of the linear matching and
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non-linear matching are shown as the hatched areas in
Figure 3.2.1(d) and (e). Comparing Figure 3.2.1{c), {d) and
{e), we see that the overall distance is being reduced each
time.

In general, even for the same word, the acoustic.
realisation of the word may vary significantly with effects
such as articulatory rate, causing 7, and Ty to be different.
When speech is spoken quickly, stationary sections may
shorten and non-stationary sections may remain of almost
the same length. In comparing the two acoustic patterns X
and Y, we want to absorb this kind of unessential distance
caused by the time difference. Dynamic time warping is a
matching method for time sequence patterns to absorb the
unessential differences by non-linearly aligning the
corresponding times as shown in Figure 3.2.1(e).

Intuitively, the matching between two acoustic patterns
X and Y will be regarded as a temporal alignment in & two-
dimensional plane as shown in Figure 3.2.2. The sequence of
matched pairs c(k)=(i(k), j(k)) of X and Y form a time

registration path or a time warping function 1 F shown as:

F=c(1),e(2),...,c(k),...,clK) (3.2.2)

The analysis vectors (frames) of the two patterns X and Y
are positioned with their first frames in the bottom left
corner of the figure with subsequent vectors following in the
x-axis and y-axis directions respectively. The slope of the
path represents the degree of compression applied to Y in
aligning it with the frames of X. In particular, a vertical
step in the path corresponds to the matching of two
successive reference frames of Y to the same frame of X, and
a horizontal step corresponds to the matching of the same
frame of Y to two successive frames of X.

The overall distance between two patterns X and Y
over the time registration path F is a weighted sum of the
individual frame distance d(c(k))=d(X;p), ¥;a) for the pairs
of frames over the path, and is expressed as follows:
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matching window

c(K)=
Fpyr-ovrmre A (T Ty

ik

Y1 X

*T'x

Sy
-~

Figure 3.2.2. Non-linear matching in the DTW algorithm

1.9
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DX Y F)=— {3.2.3)

MEE
k=1

The weight w(k) given to each frame distance depends on
the slope of the time registration path near the point defined
by the pair of frames in question. The time registration
problem involves finding the best possible time registration
path for X and Y, i.e. the path F which minimises the
overall distance D(X,Y F) subject to appropriate constraints,
such as end point, continuity, and monotonicity constraints
[85]. Then, the minimised overall distance is:
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X
D dickwk)
DX, Y)=min*=l_——— (3.2.4)
F
MEH.S
k=1

‘Now let us consider the constraints in minimising the
overall distance.

(1) End peint constraint
From starting point constraint,

i1)=4{1)=1 (3.2.5)
From ending point constraint,
:ﬁunﬁu.. JK)Y=T, 3.2.6)

(2) Oaa&aﬁ.@ and monotonicity constraints
From increasing monotonicity between consecutive
matched pairs ¢{(k) and c(k —1),

0si(k)—itk~1), 0=<j(k)—j(k—1) (3.27)
and, from the continuity, -
i) —ik—1)=1 and j(k)—j(k~1)<2

hence e(k~1) is expressed as. follows:

(k) =1, j(k))
elk—1y = {(i(k) -1, j(k)—1) _ (3.2.8)
ek ~1, ik -2)

.The above relation between c(k) and c(k—1) is called
the matching path. If we select different constraints on
continuity, other types of matching umnr are available.

(8) Matching window
In order to inhibit an n:-.mmmcum&_m registration path,
the tolerint range is restricted to within a width 2r of
the matching window as shown in Figure 3.2.2.

The denominator of Eq. (3.2.4) ia the normalising factor
of overall distance, and depends on the registration path F.
To simplify Eq. (3.2.4), we select the denominator to be
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independent of the registration path F by the following two
methods.

(1) Symmetry

wk)=(i(k) =ik — 1)+ (k) —jk—1)) (3.2.9)
In this case, the denominator of Eq. (324) is
N=T.+T,
(2) Asymmetry
wik)=ik)—i(k—1) 3210

In this case, the denominator equals N=T,

Consequently, the minimised overall distance is expressed
as:

1

DX,)Y)= N

K
B%.M&%:s@ (3.2.11)
k=1

Since Eq. (3.2.11) is minimised by selecting the best
registration path F=¢(1),c(2),...,c(k),...,c(K), the solution of
this problem is regarded as a multistage (K) decision
process. Dynamic programming can decompose this
multistage decision process into a sequence of X one-stage
decision processes, by seeking the recurrent relation of the
process. For this decomposition, dynamic programming can
effectively reduce the computation time required for the
search of the best registration path.

Let G(c(K)) denote the minimised overall distance
D(X,Y) without the denominator N in Eq. (3.2.11) to
represent explicitly the accumulated frame distance from
k=1to k=K. Then G(c(K)) can be expressed as follows:

.4
G(cBN=G(T,Ty)= min D dicth)wk) (3.2.12)
ell),...clf —1) = 1

Here, the ending point c(K) is fixed. The above expression is
further expanded to:
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K~-1

GleEN= min [ D detkDwik)+dcE)wK)]
e{l),...,c(K—1) A=t

K-1
=min{ min [ Y dlct)wk)]+dcE)wK)]
clK—1) e{l),...c{E-2) k=1 .
The first term in the outer [.] can be replaced by G(c(K —1)),
so Eq. (3.2.12) is expressed in the following recurrent
relation,

Gc(K))= %W%QAQN = 1)) +d{e(K)w(K))

In general, this line of reasoning provides the following
Tecurrence relation:

Q??cnnﬁﬁmﬁ?@ ~1))+dlc(k))wR) (3.2.13)

The above expression indicates that a sequence of X one-
stage decision processes replaces the original K-stage
process. It is exactly the mathematical expression of
principle of optimality on which the dynamic pProgramming is
based, i.e.
An optimal policy has the property that whatever the initial
state and the initial decision are, the remainirng decisions
must constitute an optimal policy with regard fo the state
resulting from the first decision{81].

Using Eq. (3.2.8) for the c¢(k—1) constraint and Eq.
(8.2.10) for wik), Eq. (3.2.13) is expressed as follows:

Gli—1, )
GG, j)=minfGG -1, j - 1) +dix; y;) (3.2.14)
Qii—-1,j-2

Here, the indicator & to specify the position of matched pairs
on the registration path is omitted for simplicity. The above
expression can be implemented by proceeding along X one
frame at a time and, for each successive frame x;, computing
a frame distance d(x; y;) and an accumulated frame
distance G(i, j) for each value of j permitted by the search
area constraints of the matching window. The initial value
of the accumulated frame distance is:
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G D=dx.y) (3.2.15)

The accumulated frame distance is the weighted sum of the
frame distances on the optimal partial path from the initial
point to (i, ;) and is found by optimising over the points that.
may be reached from the predecessors of (i, /) on such partial
paths.

Typical DTW-based speech Mma.omumna: systems can be
found in [16,50,71,72,76,85,93,94. The DTW-based
approach is a non-parametric techniqué; dnd. miny speech
templates are required " to accommodate - various
uncertainties. This results in cuwmwu?m.neﬂv:nwmeﬂ& load
in the decoding procedure, as well as an extended training
procedure. It has been shown that DTW can be considered as
a special case of hidden Markov modelling, which is a
parametric technique and offers flexibility and improved
recognition accuracy [17,55).

3.2.2. Hidden Markov modelling

Statistics and probability theory have much to offer
speech recognition. First, classical multivariate statistical
distributions, defined over a Biven pattern space, provide an
adequate model for the variability of pattern represen-
tations. Second, the question of whether or not a given
pattern belongs to some pattern class may naturally be
treated as a test of hypothesis, or as a special case of the
statistical decision theory problem. For more than two
decades, statistical pattern classification has been a healthy
branch of pattern recognition [29,31]. Applications of basic
theories of statistical pattern recognition, such as Bayesian
decision [2,5,53,104], Bayesian learning [100], and feature
analysis [19], can be widely found in speech recognition.

Statistical methods (which can absorb acoustic
variations) can be integrated with the DTW approaches
(which can absorb the time variation of acoustic speech
patterns) to achieve robust recognition. The first step toward
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this idea might be replacement of the frame distance
d(x;, y;) with probability Pr(x;| s;) which is the probability
that the input frame x; is produced from the template state
8;. This is the information theoretic expansion of the
distance to a probability, as discussed in Section 3.1.5. The
second step might be replacement of the weight w(k) with
the transition probability from one state to another possible
state in the template. Such a combination of DTW and
statistics finally leads to the concept of hidden Markov
modelling. .

In the above discussion, the template Y results in a
sequence of states which have some probability of emitting
the input frame x;, instead of a sequence of real data frames.
To guarantee a robust probabilistic model Y, the number of
states must be reduced in comparison with the number of
frames included in the template. This is a tradeoff between
obtaining the probabilistic model and losing the time
information in the template. If the number of states is
reduced to one, this reduces to the Bayesian classifier of the
individual input frames. Therefore it can be said that hidden
Markov modelling locates between DTW and frame-wise
Bayesian classifier methods.

Hidden Markov modelling is a technique for the study
of observed items arranged in a discrete-time series. The
items in the series can be individually or continuously
distributed; they can be scalars or vectors. The HMM has
been shown to represent one of the most powerful statistical
tools available for modelling speech signals, and has been
successfully used in automatic speech recognition
[1,8,22,53,62,64,86], formant and pitch tracking [21,61],
speech signal processing {35], and language modelling
{58,73]). This book concentrates on the HMM technique, in
perticular, with specific emphasis on its use in acoustic
modelling,

The work of Markov [70] and Shannon {96,971 was

concerned with Markov chains. In the hidden Markov model,
the output probabilities impose a veil between the state
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sequence and the observer of the time series. In an effort to
lift the veil, a substantial body of theory has been developed.
The initial work [10,11,13] dealt with finite probability
spaces and addressed the problems of tractability of
probability computation; the recovery of the hidden states;
iterative maximum likelihood estimation of model
parameters from observed time series; and the proof of
consistency of the estimators.

A major development in the theory was the
maximisation technique of Baum ez ol [12] that extended
coverage to many of the classical distributions. This work
has led to a wide range of theoretical outgrowths. They
include a number of generalisations, such as variable
duration HMM;s [64,91], continuous mixture HMMs [67,65),
autoregressive HMMs [56,82], semi-continuous Ms
[47,48], and trainable finite-state (hidden) grammarg [9].) A
special case of the results in [12] has been designated by
Dempster, Laird and Rubin [27] for maximum likelihood
estimation of mixture probability density functions known as

the EM algorithm.
e
The HMM uses a Markov chain to mode] the changing

statistical characteristics that exist in the actual
observations of speech signals. The Markov process is
therefore a double stochastic process in which there is an
unobservable Markov chain defined by a state transition
matrix, and where each state of the Markov chain is
associated with either a discrete output probability
distzibution (discrete HMM) or a continuous output
probability density function (continuous HMM). The double
stochastic processes enable modelling of not only acoustic
phenomena, but also time scale distances. Unlike other non-
parametric and ad hoc approaches, the parameters estimated
from the Baum-Welch algorithm [12] guarantee a finite
improvement on each iteration in the sense of maximisation
of likelihood, and converge after only a few iterations using
computationally efficient algorithms.

The HMM is a parametric modelling technique in
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contrast to the non-parametric DTW algorithm [17,55). If the
Viterbi algorithm is used for decoding in HMM-based speech
recognition, it is actually the same as the DTW algorithm
except that the probability between the test and reference
medel is computed in the HMM rather than the distance
measure between speech frames in the DTW system. The
power of the HMM lies in the fact that the parameters that
are used to model the speech signal can be well optimised,
and this results in lower computational complexity in the
decoding procedure as well ag improved recognition accuracy.
Furthermore, other knowledge sources can also be
represented with the same structure, which is one of the
important advantages of hidden Markov modelling,

3.2.3. Neural networks

In the area of speech Processing, besides the extensive
active research work on hidden Markov moedelling in recent
years, the advent of new learning procedures and the
availability of high speed parallel supercomputers have
given rise to a renewed interest in neural net models [66,90].
Neural networks are particularly interesting for speech
recognition, which requires massive constraint satisfaction,
i.e. the parallel evaluation of many clues and facts and their
interpretation in the light of numerous interrelated
constraints. Because of the high degree of uncertainty and
variability of speech, complex networks employing automatic
learning algorithms [67] to discover internal abstractions for
speech  recognition are becoming  very attractive
{15,20,39,43,46,68,80,88].

The computational flexibility of the human brain comes
from its large number of neurons in a mesh of axons and
dendrites. The communication between neurons is via the
synapse and afferent fibres. There are many billions of
neural connections in the human brain. At a simple level it
can be considered that nerve impulses are comparable to the
phonemes of speech, or to letters, in that they do not
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themselves convey meening but indicate different intensities
{109] which are interpreted as meaningful units by
the language of the brain.  Artificial neural networks
attempt to achieve real-time response and human-like
performance using many simple processing elements
operating in parallel as in biological nervous systems.
Models of neural networks use a particular topology and a
learning algorithm for the interactions and interrelations of
the connections of the neural units.

Three important practical neural networks which have
been proposed are the single-layer perceptron [31], the
muiti-layer perceptron {46,90], and Kohonen’s feature map
algorithm [60). The most distinctive feature of neural
networks is that neural classifiers compute matching scores
in parallel and have parallel inputs and outputs where
internal parameters (connection weights) are typically
trained adaptively using training data. With the
development of the back propagation algorithm for learning
[90], multi-layer perceptrons have been widely used, in feed-
forward networks with one or more layers of nodes between
the input and output nodes. The back propagation zlgorithm
is a pgeneralisation of the least-mean-square (LMS)
algorithm. It uses a gradient search to minimise the
difference between the desired outputs and the actual net
outputs, where the optimised criterion is directly related to
pattern classification. With initial parameters for the
weights, the training procedure is then repeated to update
the weights until the cost function is reduced te an
acceptable value or remains unchanged. These weights are
estimated from a large number of training observations in a
manner similar to hidden Markov modelling except that
here the estimation criterion is directly related to
classification rather than the maximum likelihood.

Speech recognition using multi-layer perceptrons
trained with back propagation has so far mostly been aimed
at isolated word recognition [20,39] or isolated phoneme
recognition [83,105,106] because speech signals must he
segmented before neural network modelling. A number of
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these studies have reported encouraging recognition
performance for isolated speech recognition {105] and limited
success in continuous speech recognition [38,43].

3.24. Algoritbms for continuous speech

In isolated word recognition, the starting point and
ending point of the word pattern is easily detected
zutomatically because the single word is included in the
input acoustic pattern. The end point detection is called
segmentation. The segmented word pattern can be
recognised by the methods of DTW, HMM and neural
networks, described in the previous sections. However, in
continuous speech recognition, segmentation itself is a
difficult problem, because word boundaries are no longer
evident owing coarticulation in natural spezking. Therefore,
isolated word techniques which require pre-segmentation can
not be applied to continuous speech. The best approach to
continuous speech is to optimise simultaneously the
segmentation and recognition of the words, instead of
successive optimisation of recognition after segmentation, as
i3 used in the isolated word recognition,

For the simultaneous optimisation of segmentation and
recognition, every possible segmentation is hypothesised for
all possible word sequences. Then the most plausible word
sequence and its corresponding end points are determined as
the final optimisation result. The dynamic programming
technique is again applicable to solve the multi-stage
decision problem: the word sequence decision and its
corresponding end point decision. The word sequence should
follow a set of grammatical constraints; however for
simplicity we consider the case where no grammatical
constraints are used, supposing spoken sentences to be
composed of any concatenation of words contained in the
prescribed vocabulary (for connected word recognition with
grammatical constraint, see Section 3.3.2). The basic idea
used in connected word recognition by dynamic programming
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can also be extended to hidden Markov modelling.

Let us consider segmentation of continucus speech

whose duration is 7, irrespective of recognition. The number
of segments contained in this segmentation is K, and each
segment is referred to as 1,2,...,k,... K. By denoting the end
frame of the segment & as E(%), the interval of the segment
k is represented as (E(k —1)+1, E(k)). Here, E(K)=T, and
E(0)=0. We call this segmentation Ay hereafter. Then, the
segmentation Ag has obviously two kinds of parameters to
be optimised: the number of segments K and the boundary
E(k) of the segment %,

Now word recognition can be regarded as a problem of
computing the minimised overall distance between the
template of the word w;, and the segment k., We will call
hereafter the minimised overall distance the word distance.
This recognition problem is solved by DTW as described in
the previous section, and the word distance is represented as
follows:

Word distance=D({(E(k — 1)+ 1, E(k)), wy) (3.2.16)

The connected word recognition problem is formalised
as a minimisation problem of the following word sequence
(accumulated) distance, with respect to the segment number
K, the segment boundary E (k) and the word sequence {w,} :

Word sequence distance (3.2.17)

K
= N DUEG-1)+1, E(k)), wy)
k=1

Then the minimised word sequence distance A(T) is given
as:

K
AM=min min  min Y DUEGR —1)+1, E®)), 1,X3.2.18)
K P_ﬁ Epv....sh k=1
This minimisation problem is solved by dynamie
Programming as in the previous section by dealing with the
last word separately.
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A(T)=min min  min  min[ X D(EE-1)+1, E()), w,)
K Ay wyoowg g we (T

+DEX -1}+1, E(X)), wy)]

K-t

=min min{  min 3 DUEk-1)+1, EGk)), w,)
S S v

+ min D{E(K -1)+1, E(K)), wg)]
wg .

By separately dealing with the last segment K,
E-1

A(T)= min min min[ min 3 DUEGR-1D+1, EG)), wy)
ER-D K-1 8g_y wy,...uy , o4

+ min D((E(K —-1)+1, E(X)), wg)]
wg

K

-1
= min { min min min DUE(R~1)+1, E(k)), wy)
EiK-1} H-1 Ap Wy, - Wy ot

+ min D(EE - 1)+1, E(K)), wy)]
yr

Here we denote the end frame of the K —1 segment as [,
namely, E(K —1)={. Then the above expression is rewritten
as:

‘}ﬂﬂvﬂawbm\» D+ min D(U+1, T), wg)] (3.2.19)
Wy

In general, this line of reasoning provides the following
recurrence relation at an arbitrary time ¢:

E:HEMEEC: min D{I+1, 8), w)] (3.2.20)

where w, is replaced by w because the segment k is not
explicitly expressed in Eq. (3.2.20).

Mainly three implementation methods have been
proposed according to the difference of control sequence or
optimisation sequence.
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(1) Two-level DP[94)

Eq. (3.2.20) includes two types of dynamic
programming. One is used in the computation of word
distance D and the other is used in the computation of
the word sequence distance. Since it includes two
dynamic programming operations, it is called a two-
level dynamic programming method. In this method,
the best matched word w is decided, by using word
level dynamic programming, to have an arbitrary
segment starting at /+1 and ending at ¢, and its word
distance is kept. Then this information is used at the
word sequence level dynamic programming. Therefore,
the two-level dynamic programming method separately
utilises the dynamic programming twice. This requires
a large amount of computation time.

(2} Level building method and One-pass DP{16,72,76)
In order to reduce the computation time of two-level
DP, Eq. (3.2.20) is modified as fallows:

A{H)=min[ E__Fg )+ D+1, 0, w)li (3.2.21)

QOur purpose is to avoid explicit searching for the best

position [, which requires pre-computation of

min D((I+1,¢), w). The inner minimisation with
/1]

respect to ! in Eq. (3.2.21) is interpreted as the
minimisation of the accumulated frame distance from
frame 1 to ¢ of input speech, fixing the last word
template w. Let us denote it as G“@,T,), where T,
denotes the end time of the template word w. Then, it
is represented as:

Qs:_ﬁsvnamngs+ DI +1, 1), w)l (3.2.22)

The above minimisation of the accumulated frame
distance from frame 1 to f is achieved by putting A(})
as the initial value to the word distance D+1, 8, w
at starting point ! +1, and computing the word distance
for the word w using the same recurrent expression as
Eq. (3.2.14). Using Eq. (3.2.22), Eq. (3.2.21) is rewritten
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as;
A{H)=minG¥(¢,T,) (3.2.23)

The above expression is free from explicit segmentation
by I. The minimum word sequence distance A(f) at
time ¢ is obtained by selecting, at time ¢, the word w to
which the accumulated frame distance aGe(t,T,) is
minimised among all words. A(¢) is used again as the
initial value in computing every word distance starting
from t+1.

In the level-building method, the accumulated frame
distance G“(£,T,) is computed for the specified template
frame of the specified word w at all input frames. On the
other hand, in one-pass DP, the accumulated frame distance
G*(,T,) is computed for the specified input frame at all
template frames of the specified word w. Since one-pass DP
18 time synchronous, the process proceeds in time increasing
order, and is therefore suitable for real time processing,

3.3. Language Modelling

Acoustic pattern matching is only the first step in the
recognition and understanding of natural confinuous speech.
Lexical knowledge (i.e. vocabulary definition) is required as
is the syntax and semantics of the language (i.e. the rules
that determine what sequences of words are grammatically
well-formed and meaningful). In addition, knowledge of the
pragmatics of language (i.e. knowledge of the structure of
extended discourse and knowledge of what people are likely
to say in particular contexts) can be of value. In practical
speech recoguition, it may not be possible to separate the use
of these different level of knowledge. Specifically, language
modelling here refers to syntax constraints.
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3.3.1. Role of langunage models

In a speech recognition system, every string of words
W = wyw;,...,w, taken from the prescribed vocabulary
can be assigned a probability, which is interpreted as the
a priori probability that the speaker will say that string of
words. These probabilities guide the recogrnition process and
are a contributing factor in determination of the final
transcription from a set of partial hypotheses [51]. Given
acoustic evidence observation O, the operations of speech
recognition are to find the most likely word string, W,
satisfying

Pr(Wj0) = maxPr(W|[0) (3.3.1)

The right-hand side of above equation can be rewritten
according to Bayes formula as

Pr(W)Pr(O|W)
Pr(0)

where Pr(W) is the a priori Probability that the word string
W will be uttered. Pr(O|W) is the probability that when the
speaker says word string W the acoustic evidence O will be
observed (this is the output in the acoustic pattern matching
as discussed in the previous sections), and Pr(Q) is the
average probability that O will be observed. Since Pr(Q) is
not related to W, it is irrelevant to recognition. It follows
from Eq. (3.3.1) and (3.3.2) that the purpose of the
recognition operation is to find the word string W that
maximises the product

Pr(W)Pr(O|W) = max Pr(W)Pr(O|W) (3.3.3)

Pr(W|0) = (3.3.2)

where Pr(O|W) relies on acoustic pattern matching. The
a priori probability Pr(W) whose probabilities are given by
the language model are thus as important as acoustic
pattern matching to a speech recognition system,

Figure 3.3.1 shows the process of continuous speech
recognition, with modules of speech signal processing, and
acoustic pattern matching as described in the previous

Section 3.3. vw 89

section, and language modelling. In the figure, one side
corresponds to speech generation by humans and the other
side corresponds to the speech recognition system. The
performance of a speech recognition system is therefore
directly related to the quality of language meodelling,
namely, the usable constraints Pr(W). Without language
modelling, the entire vocabulary must be considered at every
decision point. With a language model, it is possible to
eliminate many candidates from consideration, or
alternatively to assign higher probabilities to some
candidates than others, thereby considerably reducing
recognition errors.

There is a large and active area of research in
computational linguistics  and natural language
understanding that deals with language modelling.
Chomsky’s formal language theory [45] is widely used to
specify the permissible word sequences in natural language
processing. In the Chomsky hierarchy, the simplest language
type is the regular grammar, which in fact can only generate
the same set of sentences as those which have been pre-
defined. A more powerful language type is the context-free
grammar. For speech recognition, stochastic context-free
languages (9] have also been proposed in the spirit of hidden
Markov modelling. In contrast to conventional context-free
parsing algorithms, such as the Earley algorithm {33] or the
CYK {Cocke-Younger-Kasami) algorithm [45], Ney et al
[77] incorporated the DTW algorithm into the parsing
algorithm. A more efficient LR parsing algorithm [101] has
also been adopted based on HMMs [59].

On the other hand, stochastic grammars, such as
trigram or bigram [54), assign an estimated probability to
any word that can follow a given word. Such a modelling
approach can contain both syntactic and semantic
information, but these probabilities must be trained from a
large corpus. In a similar manner, word pair grammars
specify the list of words that can legally follow any given
word with uniform probabilities (22,62].
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Figure 3.3.1. Process of continuous speech recognition,
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3.3.2. The Chomsky langunage modelling [3,102]

In Chomsky formal language theory, language is
modelled to be generated by a grammer G=(V,T'P,S),
where V and T are finite sets of variables and terminals,
respectively. P is a finite set of production rules and S is a
special variable called the start symbol. The language,
string of terminal symbols, is produced by applying
production rules sequentially to the sfart symbol. The
preduction rule is of the form a—f, where a and B are
arbitrary strings of grammar symbols V and T, and the a is
not empty.

In formal language, four major languages and their
associated grammars are hierarchically  structured
(Chomsky hierarchy), The most general grammar is phrase
structure (Type 0) grammar in which there are no
constraints on @—f8. The next constrained grammar is
context sensitive (Type 1) grammar in which the constraint
is |a| =|B|, where |.| indicates the length of the string. The
further constrained grammar is context free (Type 2)
grammar in which the production rule is A8, where 4 is a
variable. This production rule is shown to be equivalent to
Chomsky normal form: A—w and A—=BC, where w is a
terminal and B, C are variables. The most constrained
grammar is regular (Type 3) grammar in which the
production rule is expressed as: A—w and A —»wB,

It kas been shown that ‘there are four kinds of
machines which can accept the languages produced by Types
3, 2, 1, and 0: finite automata, push down automata, linear
bounded automata and Turing machine respectively. Since
the context free grammar can represent the phrase structure
of natural language, it has been applied to natural language
processing. The regular grammar can only be applied to
spoken language in restricted applications. More general
application of the context free grammar is a topic covered in
{42]. Here, we will describe the application of regular
grammar to spoken language.
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The regular grammar is equivalent to the finite state
automat M =(V,T.3,5,F), where V is a finite set of states, T
is a finite input alphabet, § in V is the initial state, F is a
set of final states, and 8 is the transition function mapping
(V.T)to V. B=68(A,w) is a state reachable from the state
A for the given input symbol w. This is the same as the
production rule A->wB and A—w of the regular grammar,
whose variables correspond to states and whose terminals
correspond to input symbols. Hereafter, we use finite state
automata to model a task dependent language or artificial
language.

Figure 3.3.2 shows an example of a finite state
automata which can accept a language for commanding
three robots R1, R2 w..Ew R3 to go forward or backward, to
turn right or left, and to stop. In the go command, exact
numerical values of length in metres is permitted, otherwise,
the robot keeps going by the specification "on™. In the same
way, the turn command is followed by the exact numerical
value of rotation in degrees, otherwise, it keeps turning
round by specifying "on" until stop command is spoken.
There are 9 states and 22 symbols. The initial state is 0 and
the final state is 8.

In the case of application of the automata to natural
language processing, the input symbol at each state is
uniquely given. On the other hand, in the case of its
application to the spoken language, an input symbol is
unknown at each state as well as its corresponding starting
and ending time. Therefore at each state, all the symbols
going out of the state are assumed to occur, and every frame
is agsumed to be the ending frame of the words. This means
that gll the symbols branching from all the states must be
taken into consideration at every frame to determine which
symbol occurs.
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Example 3.3.1. Connected word recognrition using finite
state automata [16]

Let us consider application of the automata shown in
Figure 3.3.2 to the connected word recognition task
described in Section 3.2.4, Each aymbol w (word) in the
automata hae its origin state p and destination state q
according to the transition function 8(p,w)=q. This
constraint is represented in Eq. (3.2.20) as followas:

...Pa:w“amﬂ Bt—n—_..kﬁbcu+ n.ne__““p .UHAN.TH. NV. Ehnuw ﬁwmﬁv
where A,(I} and A(#) are the minimised word sequence
distance ending at state p at frame ! from the initial
state, and ending at state ¢ at frame ¢ respectively. Thia
expression meana that the word sequence distance Age)
from the initial state to the state ¢ must be computed at
every frame, to deal with the ambiguity of word boundary
and word name itself. {The recogniser must determine
what words locate where) {w,} is the word set whose
origin and destination states are p and ¢ respectively.
Minimisation with respect to p is required to determine
the best state aequence,

In the two-level DP, Eq, (3.3.4) is computed directly, and
in the level building or one-pass DP, Eq. (3.3.4) is
modified as in Eq. (3.2.21)

\Pocuu_ﬂma H_.._-mﬂ_” a_wh-.mnﬂt:w.T bQHu_-“_.‘ :u Eh&v: ﬁw.m:mu
“pq

In the same way as for Eq. (3.2.22), G,?7 is defined as the
minimisation of the accumulated frame distance from
frames 1 to ¢ of input speech, fixing the last word Wy, L6

oug??sunamu?mf DU+, 1), wyy] (3.3.6)
Using Eq. (3.3.6), Eq. (3.3.5) can be rewritten as:
haﬁnv”_dumu ﬂﬂ”ﬂntnﬁ.ﬂ.egu (3.3.7)

The above expression is further simplified by integrating
two minimisations with respect to p and Wy, into one with
respect to w, which is the words ending at state ¢.
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AdD)=minG U T, (3.3.8)

The above expression means that minimisation of the
word sequence distance ending at state q at frame ¢ from
the initial state is ohtained by selecting, at time t, the
word w, to which the accumulated frame distance

Q.“a aQ.H&av from the initial state is minimised among all

words, which end at the atate q. Finally, overall
minimisation is obtained in the final states at time T.

* In the above application of the automata to connected
word recoguition, the finite state automata playa a role of
reducing the number of word combinations at each frame.
If we do not use the automata, the possible number of
worda following the previous word is 23 (vecebulary size is
22). The automata can reduce this pumber to 2.9 words on
average. This number is called the static branching factor;
and is computed by counting the total number of branches
(23) which go out from states and dividing it by the
number of states (8) except the final states. The preble
of connected word recognition by finite state automata is
that the number of states increases enormously when it is
applied to more natural language. This means difficulty of
not only computation, but also generation of such finite
state automata from a large corpus, either magpually or
automatically,

3.3.3. Stochastic langnage modelling [51]

In connected word recognition by finite state automata,
since the solution is globally optimised, the recognised word
Seéquence can completely represent the input spoken
sentence. This rigid parsing can be the cause of in enormous
increase in the number of states. To solve this problem,
stochastic language modelling is proposed, which can give
the probability of the word sequence Pr(W), instead of
parsing the spoken sentence rigidly using the grammar of
formal language model.

Section 3.3.

start
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Figure 3.3.2. Example of finite state automata.
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As described in Section 3.3.1, the probability Pr(W) is
learned to be maximised from a corpus in stochastic

language modelling. In general, Pr(W) can be decomposed
as

PriwW) = Priw, w,,...,w,) (3.3.9
= WlSLSr:..SaerlEaL_Er.:.sanuv ce
. Priwwy, ... ,w,_y) - - * Priwg|w )Pr(w,)

il

H
:ﬁﬁﬂsh_guugs.:..ghrﬂv
i=1

where Pr(w;w,,w,,...,w;_,) is the probability that w; will be
spoken given that word sequences wi,ws,...,w; _, were said
Previously; the choice of w; thus depends on the entire past
history of the input. For & vocabulary of size V there will be
Vi~1 different histories and 80, to specify Pr(ww,,...,w;_,)
completely, V* values would have to be estimated. In reality,
the probabilities Pr(w|wy,...,w;_;) would be impossible to
estimate for even moderate values of {, since most histories
W, . .., W3 would be unique or would have occurred only a
few times.

A practical solution to the above problems is to assume
that Priw|w,y, ..., w,_p only depends on
Wi-M+1, ..., Wiy This leads to an M-gram language
model, such as unigram Pr(w;), bigram Pr(w;]w;_;), or
trigram Pr(w;lw;_sw;.,) language models [63]. This is
because most of the word strings will never occur in the
language if M >3 for ali practical purposes. Therefore, in a
trigram model, the probability of a word depends on the two
preceding words. The trigram can be estimated by observing
the frequencies of the word pair C{w;_3,w;_;) and triplet
Clw;_gw;_1,w;) as follows:

wﬁﬁsh_gmlu.smf—v AWWHDV

= Qﬁg__ﬁ -2, W I:EL\Q—“EM]MHEE iHv
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However, if the training corpus is not large enough,
many actually existing word successions will not be well
enough observed, leading to many extremely small
probabilities. To treat the insufficient data problem,
smoothing methods, such as the Turing— Good estimate [74],
deleted interpelation of trigram, bigram and unigram models
[28,52], as well as neural-network-based NETgram [75], can
be well applied.

This stochastic language modelling can be applied to
connected word recognition as described in Section 3.2.4.
Since probability is used in the language model, the acoustic
modelling has to be able to give the acoustic probability
Pr(Q|W) instead of distance, and minimisation is replaced by
maximisation of the probability. In the case of trigram, the
word sequence probability, which is equivalent to word
sequence distance (Eq. (3.2.20) in Section 3.2.4), must be
computed at every frame for all the paths whose last two
words w;_, and w; _, are different, instead of seeking the
best path. To these paths, the trigram Pr(w;}w, _q,w0,_;) is
applied, after computing the probability of the following
word w;. The updated word sequence probabilities are kept
and used in the succeeding steps. An efficient algorithm for
this purpose, called mﬂm. stack decoding m_mc_.:ra.__." is
proposed[53]. R

Because of the diversity of research activities, it is
- impossible to give here a comprehensive picture of language
modelling, " most of which may be found in
.[3,23,24,32,44,98,100,108).

3.3.4. Complexity measures of language

Language can be thought of as an information source
whose outputs are words w,. The averaged amount of
information per word, i.e. entropy H(L) as described in
Section 2.6.1, for the given language is measured as:
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HL) = |Mw3?§§§aw (3.3.11)
w

where w}=w,w,,...,w, is a word sequence of length k. The

entropy H(L) indicates the ambiguity or required
information (bits) to specify a certain word produced by the
language, as described in Section 2.6.1. This means that
there are on average 27'*) possible words which can follow a
previous word. This number is called the perplexity [53,99]
and is formally defined as:

PP = gHL) (3.3.12)

A _mmmcmmm shows higher perplexity when the number of
words branching from a previous word becomes larger on
average. In this sense, the perplexity is used to measure the
complexity of the language. The perplexity is also used to
measure the complexity of the task itself, because a task is
described by its suitable language in terms of vocabulary, a
number of states or grammar rules. Let us consider
perplexity in two cases: formal language modelling (finite
state automata), and stochastic modelling.

(1) Formal language modelling
In the finite state automata, the entropy at a state j is
computed as follows:

H(w|j) = |Mwl$5mom?msg | (3.3.13)

where Pr{w|j) is the word occurrence probability at the
state j. The expectation of the above entropy over gl
the states is;

H({L) = M%EEE (3.3.14)
J

where #(j) is the occurrence probability of state ;. In
the example of Figure 3.3.2, suppose that the state
occurrence probabilities #(j) are equal and the word
occurrence probabilities Pr(w|j) at the state ; are
equal, then the entropy H(L) is:

)
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H(L) = w_cma.m.m.mem.m.: (3.3.15)
-1 :
= rm:_cmwomo (bits)
Then the perplexity PP is:
PP = 2@} = 108018= 9 39 {3.3.16)

The above expression indicates that about 2.4 words
follow the previous word on average under the
assumption that word occurrence and state occurrence
probabilities are equal. In reality, since these
probabilities are not equal, it is expected that the
perplexity may be reduced more.

(2) Stochastic modelling
In the stochastic modelling, entropy for a given corpus
can be approximately estimated by [54]

HL) = I..W?m%l&rg?:..sau (3.3.17)

where n is the size of the corpus [53]. To estimate
H(L), it is necessary to know the actual probabilities
Pr(wy,wy,...,w,) in the language. These are in practice
ultimately incalculable, and estimates nlE_,Sm.:..SL
are used instead. They can be computed by Eq. (3.3.9)
according to the employed stochastic models (bigram or
trigram). The perplexity PP is:

Pp = M_EHL
(3.3.18)

= Pr{w,,w,,...,w,) V"

Approximately, perplexity is a measure of the average
branching factor of the text when presented to the
language model. Therefore, in the task of continuous
digit recognition, the perplexity is 10. In tasks of 5000
word continuous speech recognition, the test set
perplexity of the trigram grammar and the bigram
grammar is reported to be about 128 and 176
respectively [53]. In tasks of 1000 word continuous
speech recognition, the test set perplexity of the word
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pair grammar and the bigram grammar is reported to
be about 60 and 20 respectively [62].

As perplexity does not take any account of the acoustic
model, if the main concern is the contribution of the
language model to the acoustic pattern matching, other
measures such as speech decoder entropy [36] can be used,
though it is more expensive to compute than perplexity.

3.4. Summary

This chapter has reviewed several basic techniques
used in speech recognition. The central issue in speech
recognition research is acoustic pattern matching, which has
a close relation with speech signal Processing and language
modelling. Selection of signal processing methods largely
depends on the subsequent distance measures or continuous
probability density functions. Cepstral analysis is widely
used, partly because of its low correlation property.
Language modelling helps acoustic pattern matching
because it can be used to impose constraints for acoustic
pattern search space. In acoustie pattern matching, DTW,
HMMs, and neural networks are discussed. DTW can be
considered as a simplified case of hidden Markov modelling
when the Viterbi algorithm is used for decoding in HMM.
More recently, neural networks have received considerable
focuses, but these are difficult to apply to continuoys speech
recognition. It is currently techniques of hidden Markov
modelling that offer state-of-the-art speech recognition. In
fact, similar criteria to those used in neural networks are
being developed for hidden Markov modelling [7,14,30,63).
Although the discussion here was organised through speech
signal processing, acoustic pattern matching, and language
modelling, it should be noted that acoustic pattern matching
and language medelling are usually combined in the same
computational framework in practical HMM-based speech
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recognition system designs.
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CHAPTER FOUR

VECTOR QUANTISATION
AND MIXTURE DENSITIES

Quantisation, the process of approximating continuous
amplitude signals by discrete signals, is an important aspect
of data compression or coding, the field concerned with the
reduction of the number of bits necessary to transmit or
store analogue data, subject to a distortion or fidelity
criterion. The independent quantisation of each signal value
or parameter is termed scalar quantisation. In contrast, the
joint quantisation of a block of parameters is termed vector
quantisation (VQ),

The representation of the vector quantisation codeword
in the sample space can be the centroid of the corresponding
cell as in conventional vector quantisation, or can be
calculated as the probability density function for the
corresponding cell. This latter approach  involves
computation of maximum likelihood estimates when the
ohservation can be viewed as incomplete data. Conventional
pattern recognition techniques have been well used to solve
the quantisation or data compression problem with
successful application in speech coding, image coding, and
speech recognition [12,17].

In HMM-based speech recognition, vector quantisation
serves an important role in describing discrete acoustic
prototypes of speech signals for the discrete HMM. This
chapter will first review the principles of conventional vector
quantisation and several standard algorithms used for
hidden Markov modelling. In Particular, we will discuss
maximum likelihood estimates of mixture densities with the
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EM algorithm for improved performance of hidden Markov
modelling. These pave the way for the unified modelling
theory developed in subsequent chapters.

4.1. Conventional Vector Quantisation

Vector quantisation (VQ) reduces the data redundancy
to be transmitted. This inevitably causes distortion between
original data and transmitted data. A key point of VQ is to
minimise the distortion, In this section, the distortion caused
by VQ is considered; then two typical VQ techniques are
shown which can minimise the distortion.

4.1.L. Vector quantisation and distortion

Assume that x= (*1,%3,...,5)'€R? is a d-dimensional
vector whose components {xe, 1=k=d} are real-valued,
continuous-amplitude  random variables. In  vector
quantisation, the vector x is mapped to another real-valued
discrete-amplitude d-dimensional vector z. It is then said
that x is quantised to 2.

= ¢(x) (4.1.1)

In Eq. (4.1.1) q0 is the quantisation operator. Typically, z
takes one of a finite set of values Z={z, l1={=L}, where
Z;={2y, 23,...,z4). The set Z is referred to as the codehook, L is
the size of the codebook, and {z,} is the set of codewords. The
size L of the codebook is also called the number of levels in
the codebook.

To design a codebook, the d-dimensional space of the
original random vector x can be partitioned into L regions or
cells {C;, 1<i<L} and associated with each cell C;is a

vector z;. The quantiser then assigns the codeword g, if x lies
in ﬁ.._
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g(x) =z, ifx € ¢ (4.1.2)

This codebook design process is also known as training
the codebook. An example of a partitioning of two-
dimensional space (d=2) for the purpose of vector
quantisation is shown in Figure 4.1.1. The shaded region
enclosed by the bold lines is the cell C;. Any input vector x
that lies in the cell C; is quantised as z;. The shapes of the
various cells can be different, and the positions of the
codewords corresponding to the cells are determined by
minimising the average distortion associated with the
corresponding cells. The positions of the codewords within
each cell are shown by dots in Figure 4.1.1.

When x is quantised as z, a quantisation error results
and a distortion measure d(x,z) can be defined between x
and z to measure the quantisation quality. The distortion
measure between X and z is also known as a distance
measure in the speech recognition context. The measure
must be tractable in order to be computed and analysed, and
alse must be subjectively relevant so that differences in
distortion values can be used to indicate differences in
speech signals. Most distance measures discussed in Chapter
3 can be used here as distortion measures for vector
quantisation. A number of perceptually based distortion
measures, and others that correlate well with subjective
judgements, have also been used in speech coding [2 18],
However, the most commonly used measure is the Euclidean
distortion measure which assumes that the distortions
contributed by quantising the different parameters are
equal. In general, unequal weights can be introduced to
render certain contributions to the distortion more important
than others. One choice for weights that is popular in many
practical applications is to use the inverse of the covariance
matrix of z.

d(x,2z) = (x~2z)'2 " Yx—g) (4.1.3)

This distortion measure, known as the Mahalanobis
distance, is actually a simplified Gaussian density



114 y CHAPTER 4

Figure 4.1.1. Partitioning of two-dimensional
space into 18 cells.

Tepresentation as discussed previously in Chapter 3.

To design an [-level codebook, it is necessary to
partition d-dimensional space into L cells and associate with
each cell a quantised vector. One criterion for optimisation of
the vector quantiser is to let the overall average distortion
be minimised over all L -levels of the quantiser. The overall
average distortion can be defined by

D = Eld(x,2)] (4.1.4)
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L
2 Priz)Eld(x,z))x € C;]

i=1

L
= 2 [ oo dx2If(x2)dx
i=1 £ '
L
= M Prz)f ¢, dmz)f(x|z)dx

=

where E[.]) denotes the expectation; the integral is taken
over all components of the vector x; Pr(z;) denotes the
discrete probability of the codeword z;; f(x|z;} denotes the
multidimensional probability density function of x given z;;
and D; is the average distortion in cell C;.

No analytic solution exists to guarantee global
minimisation of the average distortion measure for a given
set of speech data. However, an iterative algorithm, wkhich
can guarantee a local minimum, exists and works well in
practice. We will discuss several such algorithms that are
useful in codebook design.

4.1.2. The k-means algorithm

If the overall average distortion is used as a ctiterion in
cadebook design, we say a quantiser is optimal if the overall
average distortion is minimised over all L-levels of the
quantiser. There are two necessary conditions for optimality.
The first condition is that the optimal quantiser is realised
by using a nearest neighbour selection rule
q(x) = z; if and only if d(x,z;) = d(x,2)),

) (4.1.5)
JRL1=S;=L

Note that
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Eld(x,z)|x € ¢, (4.1.6)

can be mirimised when z; is selected such that d(x,z;) is
minimised for x. This means that the quantiser must choose
the codeword that results in the minimum distortion with

respect to x, i.e. x is selected for the corresponding cell C;.

} CHAPTER 4

The second condition for optimality is that each
codeword z; is chosen to minimise the average distortion in
cell C;. That is, z; is that vector z which minimises

D; =Pr(z;) Efd(x,2,)|x€C,] (4.1.7)

Since the overall average distortion D is a linear
combination of average distortions in cell C;, they can be
independently computed after classification of x. The vector
z; is called the centroid of the cell C;, and is written

z; = cent(C)) (4.1.8)

Computing the centroid for a particular region (cell)
will depend on the definition of the distortion measure [10].
In practice, given a set of training vectors {x,, 1<% =T} a
subset of K, vectors will be located in cell C,. In this case,
f(x]z;) can be assumed to be 1/K;, and Pr(z;) becomes K/T.
The average distortion D; in cell C; can then be given by

1
i nmﬁHuN.v
N._n.mm i AAHQV
Given the average distortion of-cluster C; as in Eq. (4.1.9),
and d(x,z) as in Eq. (4.1.3), the minimisation of D with
Tespect to 2; is given by setting the derivative of D, to zero,

VD=V B (x-S x gy
xEC,
1
= 2 Ve (x—2)' 3 Yx—3)
m_:umMD z i {4.1.10)

==2 > 2 Y x-z,)=0
r TEC

Finally centroid Z; is obtained from
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1
i >x (4.1.11)
lxg Q—,

where z; is simply the sample mean of all the training
vectors, x, contained in cluater C;. This works well with a
large class of Euclidean-like distortion measures [17].

To minimise iteratively the average distortion measure,
the most widely used method is the k-means algorithm
(1,8,9]. In the k-means algorithm, the basic idea is to divide
the set of training vectors into L clusters C; {1<i<L) in
such a way that the two hecessary conditions for optimality
described above are satisfied. The k-means algorithm can be
described as follows:

Example 4.1.1, The k-means algorithm

Step 1: Imitialisation. Choose some adequate method [8]
to derive an initial VQ codebook (z, 1=i=<L).

Step 2: Classification. Classify each element of training
vectors {x,} into one of the clusters Ci by choosing the
nearest codeword z; (x€C, ﬁ%n.u._um...:n.nb for all j=i),
This classification is called minimum distance classifier,

Step 3: Codebook updating. Update the codeword of
every cluster by computing the centroid of the training
vectors in each cluster (z; = cent{C)), 1=<i=I).

Step 4: Termination. If the decrease in the overall
distortion D at the current iteration relative to the overall
distortion at the previous iteration is below a chosen
threshold, STOP,; otherwige go to Step 2.

In the process of minimising the average distortion
measure, the k-mears procedure actually breaks the
minimisation process into two steps. Assuming that the
centroid z; (or mean) for each cluster C; has been found, then
the minimisation process is found simply by partitioning all
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the training vectors into their corresponding closest cluster
according to the distortion measure. On the other hand if all
of the partitions are obtained, the minimisation Process
involves finding the new centroid within each cluster to
minimise its corresponding within-cluster average distortion
D;. By iterating over these two steps, a new value of overall
distortion D which is smaller than that of the previous step

can be obtained. However, the k-means algorithm can only

converge to a lecal optimum [1,16]. Furthermore, any such
solution is, in general, not unique {11} Global optimality
may be approximated by repeating the k-means algorithm
for several sets of codebook initialisation values and then
choosing the codebook that produces the minimum overall
distortion, although such a criterion may not necessarily
lead to optimal speech recognition accuracy {13].

Example 4.1.1. The LBG algorithm

Anr extended k-means algorithm, the LBG algorithm
proposed by Linde, Buzo, and Gray [16], is also commonly
used. The LBG algorithm iteratively splits the training
data into 2, 4, .., 2™ partitions, with a centroid for each
partition. The centroid is determined by iterative
refinement as for k-means clustering,

Step 1: Initialisation. Set I (number of partitione or
clusters) =1. Find the centroid of all the training framea.

Step 2: Splitting. Split L into 21, partitiona. Set I = 2L,

Step 3: Clagsification. Classify the set of training data
{x)} into one of the clusters C; according to the minimum
distance classifier.

Step 4: Codebook upd ating. Update the codeword of
every cluster by computing the centroid in each cluster.

Step 5: Termination 1. If the decrease in the overall
distortion D at each iteration relative to the value D at
the previous iteration is below a selected threshold, go to

)

Step 6; otherwise go to Step 3,
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Step 6: Termination 2. If L equals the VQ codebook size
required, STOP; otherwise go to Step 2.

Step 3 and Step 4 are the same as for the k-means
clustering algorithm. Various heuristic methods can be
adopted in the splitting atep to find two vectors that are
far apart in each partition,

4.2. VQ Codebook with Mixture Densities

In HMM-based speech recognition, the goal of VQ is to
generate a number of acoustic prototype vectors (VQ
codewords) from a large sample of training vectors such that
the codewords can represent the distribution of the training
vectors; and minimise the total distortion over all training
vectors. The VQ partitions the acoustic feature space into
separate regions according to some distortion measure
regardless of the probability distributions of the original
data. This introduces errors in the partition operations which
may destroy the original signal structure.

_ As an alternative, the VQ codebook can be modelled as
a family of Gaussian probability density functions (pdfs)
such that each cell will be represented as & probability
density function as shown in Figure 4.2.1, where dotted lines
show conventional VQ partitions. These probability density
functions can be overlapped, rather than partitioned, to
represent the acoustic feature space. The centroid obtained
via such a representation may be quite different from that
obtained using the conventional k-means algorithm since the
distribution property of signals can be taken into
consideration. Another advantage is that the use of a
parametric family of Gaussian pdfs within the VQ operations
can be closely combined with the HMM methodology leading
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Figure 4.2.1. Partitioning of two-dimensional
space with densities

to the unified modelling framework as will be discussed in
Chapter 7.

Problems of estimating the parameters which
determine a mixture Gaussian pdf have been the subject of a

large, diverse body of literature [19]. The most distinctive

solution to the problem is the EM algorithm [7]. This
technique has in fact been defined in an earlier publication
by Baum et al. [3] and has been widely used in HMM-based
speech recognition. Re-estimation of these parameters can
be viewed as a process of unsupervised learning of the
mixture Gaussian pdf, like those described in Chapter 2,
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which in fact include the conventional VQ technique of the
k-means algorithm as a special case.

4.2.1. Estimation of the mixture pdf

In this section, we will apply the EM algorithm to the
estimation problem of the mixture Gaussian pdf. As
discussed in Chapter 2, the EM algorithm is a maximisation
algorithm of the log-likelihood of incomplete data with
respect to parameters in the probability model, by iteratively
maximising expectation of the log-likelihood of complete
data via a Q-function. Here incomplete data indicate the
observed data (training data), and complete data are
composed of observed data and unobserved data which
specify hidden components from which the observed data
come.

In the mixture pdf, we can assume that observable data
X; occurs from one of component densities Q#H\.#AHLGEV.H
Y+ is unobservable and specifies the pdf with parameter Py,
The complete data is ‘(x,,y,) and its probability density
function is given as joint probability
FZpyu| ®)=Pr, £, (x| p,) {4.2.1)

where Pry, i3 the probability of the unobserved data ¥Yi used
to specify the component density C,, from which the

observed data x, comes. ® is a vector of all parameters
(p1, .. .,9,Pry, ... ,Pr;) contained in the probability

" model. The number of components is assumed to be L. Eq,

(4.2.1) means that the probability that the data x, occurs
from the component density Cy, is the joint probability of

two independent actions: specifying the component density
O:_ and emitting the data x, from the component. The

probability density function of incomplete (observed) data x,

' In Chapter 2, we denoted the category-conditional pdf by
\AHLE.;,GS.Y here for simplicity it is denoted by x.fANw_Qb_v
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is therefore given as the marginal probability:
Fan= 2 3] D)
T .

(4.2.2)
= Mhu _J:_\. T AHL .ﬁu_.__V
»x

Eq. (4.2.2) is the commonly used mixture probability density
function of observed data.

The EM algorithm maximises the logarithm of Eq.
(4.2.2) by. iteratively maximising the expectation of the
logarithm of Eq. (4.2.1) over parameters ®. As shown in
Chapter 2, this leads to maximisation of the following Q-
function:

T
Q(D,9)= 39,0, ®)
k=1

T
f(xp.3a{®) =
= logf (x;,y|
22 Faylay B 1)

where T is the number of observed data samples and ¢ is
the newly estimated parameters in any iteration. By
inserting Eq. (4.2.1) into (4.2.3), the following formula is
obtained ( see Section 2.4.3):

(4.2.3)

L L
Q(®,8)= DalogPr, + 21Q /(,5)) (4.2.4)
i=1 i=1 .
where
% Prifi(x]9:)

;= : 425
¢ »M_ f(x, | D) A )
Q. (® |_vuw“wi._.5_mwa fi(xe|Fo) (4.2.6)

P Pi = \.Cﬂk_ﬁu gfilX, P v &

The maximisation of the first term of Eq. (4.2.4) i3 obtained
from linearly constrained optimisation, Example 2.5.3 (see
Section 2.5). Then
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L
Mn..

Pr=

L
2 oo v |1 Prfixile)
HM@;Q&LGL / M_uﬂ
=1 fx]®) k=1 flx, | D) (4.2,

HP w HJ.%,_AM.._@V
qkﬂ» N.Aub_ev

The maximisation of the second term of Eq. (4.2.4) is
obtained by setting its derivative with respect to ; to zero:

_ o Prifiix| )
Vs Qe @)= X— o

G Prifixdey Valfilxe ®) o
w1 F(x|®) izl )

In the mixture Gaussian pdf, each component pdf is given as
a normal pdf

i $9 =Nz, 5,30 4.2.9)

Then the partial derivatives in Eq. (4.2.8) with respect to
mean vector #; and inverse covariance matrix M_.L m.ﬂmﬁoa

Example 2.5.1): .
qmm,:u_. Bir ) =N(x, 10, 203 Y — w) (4.2.10)

V5. loefi(x|§))
(4.2.8)

ﬂmw _ZAH?P .W..t = wzﬁnn.ﬁrmﬁ.xw_. — (= — ﬁ..vﬁﬂu - WLJ

Substituting Eq. (4.2.10) into (4.2.8), it can be seen that the
re-estimates p; and X, can be given by
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w x, ﬁﬁ..bauw_ﬁt

g =4zl fxl® (4.2.11)
h wwsbﬁuﬁ_ﬂm o
k=1 \AHLGW

T
— — Prifix|en

(x; — ﬁ.x I h.%

.M »tu*t mo:_ev

Ll
I

4.2.1
w Prifi(x;]9:) ( 2

Here, Pr.fi(x,}9.)/f(x,|®) is the a posteriori probability
and can be considered as the probability that observation x,
belongs to component C;. The information as to whether a
given observation x should belong to component C; (the ith
Gaussian pdf) is hidden, and can only be seen via y. The
solution of the EM algorithm is to compute whea and how
often a given observation x will be expected to be in each
component. These expected statistics can then be used to
compute new estimates of new parameters ®. No assumption
is imposed on how each component pdf should be organised
with any other. As will be discussed later, the Markov
properties can be imposed on these component pdfs such that
the temporal information can be well modelled. In such
cases, the EM algorithm will be the same as the
Baum —Welch algorithm, whick has been used in maximum
likelihood estimation of hidden Markov mode! parameters. It
can thus be expected that mutual optimisation of the vector
quantisation codebook and hidden Markov model parameters
is possible. The unified modelling will be discussed in
Chapter 7,

4.2.2. Simplified mixture pdf estimation

Several types of VQ algorithms can be derived by
simplifying the process of mixture Gaussian pdf estimation.
Figure 4.2.2 shows their relations and the algorithms are
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described below as examples.

Example 4.2.1. Mixture Gaussian VQ algorithm

The estimation of mixture Gaussian pdf is iteratively
carried out, and the resultant mean vectors ji; are
interpreted as codeword z. We call this vector
quantisation here mixture Gaussian VQ. The algorithm
is described as followed:

Step 1: Imitialisation. Choose some adequate method to
derive an initial VQ codebook (p;, 1<i<L), related
covariance matrix Z; and a priori probability Pr;.

Step 2: Contribution computation. Compute contri-
butions from each element of training vectors {x,} to each
component C; by computing the a posteriori probability
Prifix| @)/ f(x,|®).

Step 3: Codebook updating. Update the codeword by
computing the centroid in each component pdf by using
the contribution of each training vector based on Eq.
(4.211). Update the related covariznce matrix and
a priori probability based on Eq. (4.2.12) and (4.2.7).

Step 4: Termination. If the increase in the value of the
Q-function at the current iteration relative to the value of
the Q-function at the previous iteration ia below a chosen
threshold, STOP; otherwise go to Step 2.

The mixture Gaussian V@ can be further stmplified,
For example, in Step 2 of Example 4.2.1, one can select the
component to which the contribution of the training vector
x, is the largest. Such a single classification has the same
strategy as the conventional minimum-error-rate classifier
(see Section 2.2.3) based on a posteriori probability. Based on
the single classification approach, many alternatives exist by
replacing distortion measures. For example, a distortion
measure used in mixture Gaussian VQ may be:
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d(xp,p;) = —logf (X;,y4 | ®)
= —logPr; +4log(2m?| L] (4.2.13)
+Hx — p ) 27HE, - 1)

|

o -] 9 Based on such a distortion measure, one can assume that
2 m .,m‘.mb elements of training vectors x= (x1,%3,...,x¢) are independent
g g e a with a fixed variance ¢ This leads to a simplified distortion:
o 73] g lea®
m m..m % E d(xy,p;) = —logPr; + tlog(2m)¢ 024 42.14)
= = -9
S m_m +Hx - p)(x—p)/a®
£ a m. . The above distortion measure can be expressed as:
E] = w | 3
| = %H W 2, (X, 1) = (xp — )" (X — p;) — AlogPr, (4.2.15)
= N ‘g
nm Pl 3 m When this distortion measure is wused, it is called
.m & 2 entropy constrained VQ [6], or generalised k-means V@ in
m m which @ priori probability Pr; is taken into consideration in
& -y - k-means VQ, and the term —AlogPr, is related to the
m 3 g 5 entropy of the codewords in coding [6]. If the & priori
* Mﬂo. a m probability term in Eq. (4.2.15) is discarded, it is exactly the
= | g = Ry 3 g same as the conventional k-means VQ algorithm. In
-8 e.m ..m g addition, if the covariance matrix I, is kept, it leads to k-
rm mm = means VQ with Mahalanobis distortion measure as shown
@ 85 M in Section 4.1.
c N\ CF g o
&2 A @ %W. -
& . B A -
= =K s o @
@ Wm‘ @ m 2 Example 4.2.2. Fuzzy VQ algorithm [4,20,22]
a n - -y N
nwk . Fuzzy VQ can also be viewed as a simplified case of the
mixture Gaussian VQ. When k-means V@ with Eucl-
idean distance is used in multiple classification mode, the

overall average distortion can be written as;

T L
D=7 Ymfid(x, p) (4.2.16)
r=li=1
where my, nc:.mm_.eu.% to the a posteriori probability or
contribution of training vector x; to component C; in Step
2 of the mixture Gaussian VQ, therefore
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Zmy=1 (4.2.17)

It should be noticed that Eq. (4.2.18) corresponds to the
negative of the Q-function (4.2.3). Eq. (4.2.16) is called
the fuzzy objective function, and the parameter F>1 is
called the degree of fuzziness, The optimal m,; which
minimises Eq. (4.2.16) under the condition Eq. (4.2.17) is
given as (see Example 2.5 4):

-1

L
my;=| 3 [d(xe o)/, ) P4F -1 (4.2.18)
=1

ﬂ.:..on the above contribution .5: is used with Ewuclid
distance, it is called Fuzzy VQ or c-means ve.

Step 1: Initialisation. Choose some adequate method to
derive an initial VQ codebook {ge, 1=i=1L).

mnm.u 2: Contribution computation. Compute contri-
bution m,; of each element of training vectors {x,} to one
of the components C; by using Eq. (4.2.18),

Step 3: Codebook updating. Update the codeword by
computing the centroid by using the contribution of esch
training vector:

T I
r
MXe

FH»

1
T
2 mk
k=1

Step 4: Termination. If the decrease in the value of the
fuzzy objective function at the current iteration relative to
the value of the fuzzy objective function at the previous
iteration is below a chosen threshold, STOP; otherwise go
to Step 2. :

(4.2.19

The above described VQ algorithms can be viewed as
parallel algorithms since processin
X, -3 does not affect the
data X,.

g of previous training data
Processing of the present training
On the other hand, there is a sequential VQ
algorithm in which the present data x, is affected by the
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previous data processing. The typical algorithm is called
phonotopic mapping, described as follows:

Example 4.2.3. Phonotopic mapping algorithm [14,15}

Step 1: Initialisation. Choose some adequate method to
derive an initial V@Q codebook (i, 1=i=<L), and set &
equal to 1.

Step 2: Contribution computation. Select the nearest
codeword p; to the kth training vector x, using Euclidean
distance, Collect the N, codewords which are nearest to i
Compute the contribution of data x; to each of the N,
codewords by:

o (x; — g (4.2.20)

h\ﬂ.]f....

where a, iz &2 monotonically decreasing function of £, and
pt is the codeword p; updated at the kth data training.

Step 3: Codebook updating. Update the N, codewords
by updating the new centroid by using the contribution of
the training vector based on the following expression:

?wi”tw._.n___ﬁﬂfl.cwu (4.2.21)

Step 4: Termination. If the all data are used for
updating the codeword, STOP; otherwise go to Step 2 for
the next data (k=k +1). Steps 2, 3 and 4 are repeated for
the same training data set.

The above mentioned VQ techniques were mainly used
in speech or image coding. There are a sender and a
receiver in the communication. The sender encodes
speech/image signal into codes and transmits them to the
receiver. The receiver decodes the transmitted codes into a
speech/image signal. A codebook is the information pair of
code number and the corresponding codewords (vectors)
which are designed to minimise the overall average
distortion (by Step 1 to Step 4 in the VQ algorithm).
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Sharing this codebook, the sender encodes the input
speech/image data by selecting the code number whose
codeword is closest to the data, and transmitting it to the
receiver. The receiver reproduces the speech/image data by
looking up the same codebook using the transmitted code
number and getting the corresponding codeword. VQ
techniques are also used in speech recognition where a
typical example is a discrete HMM in which codewords are
used as sample space to represent the probability mass
function of speech data. The relationship between VQ and
HMM will be described in Chapter 7.

4.3. VQ for Category Discrimination

In the previous sections, we have discussed several
kinds of VQ techniques for generating the codebook which is
mainly used in speech/image coding. For speech recognition,
recent researches show that these VQ techniques should
incorporate the linguistic information and classification
information in the optimisation procedure. Here we will give
two examples which are specifically designed for speech
Tecognition by incorporating Phoneme category (or other
linguistic category) information in the optimisation
procedure. A more general unified theory which can optimise
the VQ codebook as well as HMM parameters is within this
scheme, and will be described separately in Chapter 7. The
Purpose of the VQ, in this case, is to design the codewords
which can discriminate the phoneme category, instead of
minimising overall average distortion. We assume that each
training data x, has a label indicating its phoneme category
Y-
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Example 4.3.1. Learning vector quantisation (LVQ) [14]

This algorithm proceeds sequentially and is similar to
phonotopic mapping. The difference is that only one
codeword p; is selected for updating instead of N;
codewords in Step 2 of phonotopic mapping. A phoneme
category is given to the training dats and the selected
codeword, whose category is determined by majority rule,
for the data used to compute the codeword. If the
phoneme category y, of the data Xz ia equal to the
phoneme category of the closest codeword i (correct case),
the codeword of the component is updated (rewarded) as
follows:

BT =pl agxy — ph (4.3.1)
otherwise punished (incorrect case):

_‘u_w+~”___—w|ﬂwﬁﬂp |t_vv (432.2)
The other codewords are not updated by this training
data. The effect of thia VQ lies in the ability to learn the
decision boundary optimally between two categoriea by

using Eq. (4.3.1) in the correct case and by using Egq.
(4.3.2) in the incorrect case,

Another example to be discussed here is
mutual information based VQ. This algorithm also proceeds
sequentially and is similar to the inverse of LBG ve.
Instead of splitting each cluster, it merges sequentially two
clusters which can keep the mutual information defined
betweer codewords and phoneme as high as pessible after
provisional merge, among all the cluster combinations. This
makes it possible to get codewords which have good
correspondence to phonemes, or can discriminate phonemes.

Example 4.3.2. Mutual information based V@ [21]
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This m_mcl.a.:u starts with producing many clusters by the
LBG algorithm, then reduces the number of clusters by

anﬂumnwa_ﬁ.irza rmmvmnmacnnm:u?nﬂmaonmm high
as poasible. .

Let z and y, denote the codeword of cluster C; and
phoneme categories Z and ¥ denote the codebook {z;} end
phoneme set {y,} respectively. The number of codewords is
assumed to be L at the initial step. H(Y) and H(Y|Z)
mmﬂa.nm. @ priori entropy of phoneme category and
conditional entropy of phoneme category after cbserving
the anmﬂaMn awwﬁa&qm_w. Mutual information between
acoustic codeword and phoneme category is denoted as
HY;Z)=H(Y)-H(Y|Z) (see Section WMW The merging
process is as follows:

Step 1: Select two codewords % and z; among all
non_muqmam_ and compute the following probability after
Provisionally merging them.

Privelz)=Pr(nlz)+ Priy,|z) (4.3.3)

ﬂrmwo. Pr(ylz;) is the a posteriori probability after
provisionaily merging the two codewords z; and 2;, Then
compute the mutual information in the following way:

Mtﬁ%.wNwHNNGJI_m«QAM._NV

L-1 Priysz) (4.3.4)
= P log———"— -
Mﬁm G20l Priyv)Pr(z)

where b,qﬁx_.mv and I;(Y;Z) are the conditional entropy
and mutual information after provisionally merging two
codewords z; and z;. .

Step 2: Merge two codewords z; and z; which can show
—.&m. maximum mutual information L{Y.Z) i=j after
their provisional merge in Step 1, and also merge the
@ posteriori probabilities Pr{y,|z) and Pr(ylz;). Decrease

the total number of codewords [, = I, — 1, and go to Step 1.

The final codewords are obtained by computing the mean

49.“92 of merged clusters after the above merging process
finishes.

CHAPTER 4
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The same technique as shown in Example 4.3.2 is
applicable - without using the phoneme category in an
unsupervised way. Ir this case, the VQ codeword is itself
regarded as a category, and merged one by one according to
the mutual information criteria [5].

4.4. Summary

In this chapter we have discussed several prerequisites
for discrete hidden Markov modelling. Conventional Vq is
an application of clustering techniques to produce prototypes
(codewords) of observations. A given observation can then be
classified inte one of such prototypes. A finite set of
prototypes (codewords) can be wused to represent the
continuous observation such that the discrete probability
distributions can be used to model the given observations.
Each codeword can be represented either by the centroid of
observations in the corresponding cell or by the probability
density function estimated from the corresponding cell. The
relationship between them is shown through simplification of
the classification process and distortion measure.

The assumption of probability density function leads to
solution of the EM algorithm, which has essentially the
same underlying characteristics for hidden Markoyv
modelling as the complete-incomplete data problem. Only
incomplete data can be measured or observed, and the
iterative algorithms must be used to guess or re-estimate the
undhservable data. As the same approach can be applied to
both VQ and subsequent hidden Markov modelling, the
unified modelling of these can be made possible on the
assumption of mixture density representation of the VQ
codebook.
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CHAPTER FIVE

HIDDEN MARKOV MODELS
AND BASIC ALGORITHMS

As pointed out in previous chapters, there are many
uncertainties in speech recognition. Stochastic modelling is a
flexible general method for modelling such problems.
Hidden Markov modelling is such a stochastic technique for
the study of the complete-incomplete data problems
associated with time series, It permits modelling with many
of the classical probability distributions and is well suited to
the incorporation of temporal information. There has been a
significant growth in the number of papers reporting
applications of hidden Markov modelling recently. This
chapter will discuss the main toels in hidden Markov
modelling of speech signals, ie. the forward--backward
algorithm, the Baum —-Welch algorithm, and the Viterbi
algorithm. The basic theory of HMMs will be exemplified
with the discrete HMM, in which the output probabilities
are discrete probability distributions and VQ is a
prerequisite to convert the continuous speech signal into a
finite set of prototypes,

5.1. Markov Processes

There is often significant structure embodied in a
natural language. For example, in English, the letter Q is
almost always followed by the letter /. Therefore, the
probability of secing the letter I/ depends very much on the
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letter that came before it. This is a situation that often
arises in practice — the previous part of a message can often
greatly influence subsequent events. Such a stochastic
process can be described by a jth-order Markou process
which enables description of some of the high probability
structures that arise typically in languages. These can be
summarised by the Markov property, i.e. for any sequence of
time domain events the conditional probability density of a
current event given all the past and present events depends
only on the most recent ; events. A Process which satisfies
the Markov property is called a Markov process,

As an example of a simple first-order Markov process,
suppose that there are three symbols, a, b, ¢ in the alphabet,.
Let the probability that symbol a is followed by any of the
three symbols a, b, ¢ be 1/3. Let the probability that the
symbol & is followed by another & be 1/2, and by either of
the other symbols, a or ¢, be 1/4. Finally, let the probability
that the symhol ¢ is followed by a ¢ be 1/2, and by either of
the other two, a or b, be 1/4. We have

-1 =1 =1
Prigla) = 3 Pribla) = 3 Pricla) 3
- 1 -1 -1
Pria|b) = P Priblb) = 5 Pric|d) = a
_ 1 _ 1 - 1
Priale) = e Pribley = T Pricle) = 3

It is conventional to use a transition graph to illustrate
a Markov process. There are,[of course} three states in this
example (for a, b, and ¢ respectively) indicated by the circles
shown in Figure 5.1.1,

Each directed line is a transition from one state to
another state, whose probability is indicated by the number
alongside the line. For example, Pr(a|b) is the directed line
from state & to state ¢ and has the probability of transition
of 1/4. In this example,each state has three lines out and
three lines in. Such a Markov model may be used, for
example, for weather forecasting, an example given earlier
in this text. Let state ¢ have output, saying sunny, state b
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1/2

1/4

1/2.

Figure 5.1.1. An example of a Markov process.

have output cloudy, and state ¢ have output rainy, Given
today as being sunny, it is equally likely that tomorrow it
will be any of the three states sunny, cloudy, or rainy. But if
today is either cloudy or rainy there is a 50-50 chance that it
will be the same tomorrow, and only one in four that it will
be either of the other two. Thus, the stochastic process of
weather forecasting. can be roughly described by such a
Markov process.

Assume states a, b, and ¢ are labelled as 1, 2, and 3,
then the traasition graph shown in Figure 5.1.1 can be
written in matrix form, where the element of the transition
matrix ¢; denotes the transition probability from current
state i to next state j.

)
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1/3 1/3 1/3
A =11/4 172 1/4

1/4 1/4 1/2
where in a transition matrix, the sum of the elements in any
row must be exactly 1, since the current state must
necessarily go somewhere. Instead of having a definite state,
we have a probability distribution for that state (wy, 7y, org),
where w{+my+wy=1. The case may arise where one value
7;=1 and the other two are 0, which means that we have a
definite state.

As defined, Markov models can be used for a study of
observed symbols arranged in a discrete-time series. The
state sequence is observed in such a Markoyv model, for
example, rainy-sunny-rainy. Nevertheless, such a model is
toe restrictive to be applicable to many problems of interest.
In a hidden Markov model (HMM), the output for each state
corresponds to an output probability distribution instead of a
deterministic event. The output probabilities thus impose a
veil between the state sequence and the observer of the time
sequence, i.e. the state sequence will be hidden (not
observable). This mechanism is powerful in certain
applications such as speech recognition in particular. In the
following sections, we will discuss a theory to lift such a veil,
i.e. the theory of hidden Markov models.

9.2. Definition of the Hidden Markov Model

Signal modelling based on HMMs can be considered as
a technique that extends comventional stationary spectral
analysis principles to the analysis of time-varying signals,
Many real world processes often exhibit a sequentially
changing behaviour; the properties of the process are usually
held in steady states, except for mimor fluctuations, for a
certain period of time before changing to another set of
properties. In general, there is no accurate procedure to
detect every such short-time segment of observation. Of
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course, there are many processes that do not change
synchronously with every analysing segment. If it is
assumed that these periods of steady state behaviour can be
identified, and that the temporal variations within each of
these steady periods are, in a sense, statistical, then a
statistical model may be used to represent these well-
behaved sections of a steady signal with some
characterisation of how one such steady period evolves to the
next. It has to be questioned how these steady or
distinctively behaving periods can be identified and
represented, and how the sequentially evolving nature of
these periods can be statistically modelled. It is the HMM
that successfully treats these problems under a probabilistic
or statistical framework,

HMMs use a Markov process [9] to model the changing
statistical characteristics that are only probabilistically
manifested through actual observations. The state sequence
is hidden, and can only be ohserved through another set of
observable stochastic processes. Each hidden state of the
model (or the transition between states, which corresponds to
a parallel theory as discussed here) is associated with a set
of output probability distributions, which can be
characterised by either discrete probability distributions or
continuous probability density functions. The veil between
hidden state sequences and the observable stochastic process
is characterised by the output probabilities.

To understand the concept of the HMM, consider the
following example illustrated as Figure 5.2.1. A person is
performing a experiment behind a veil. There are N =3 urns
containing a large number of coloured balls, and there are
L =5 distinet colours of the balls. An initial urn is chosen,
according to some random process. A coloured ball is then
chosen from this urn at random. The result of the colour can
be observed in front of the veil. After the colour of the ball is
observed, the coloured ball is replaced in the same urn and a
new urn is selected according to a random process associated
with the current urn. The ball selection process from this
hew urn is repeated. This experiment generates a finite

R
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Figure 5.2.1. The urn and ball experiment.

observation sequence of coloured balls. Only the sequence of
coloured balls can be observed in front of the veil. This
simple example already possesses properties associated with
an HMM: it is a generative mechanism for creating
observations and the mechanism is a stochastic process with
a hidden component. In the process of generating the
observed sequence of coloured balls, a hidden sequence of
urns is also generated. The problem of interest is how to
build a stochastic model according to the observed sequence
of coloured balls to explain regulations on the experiment
(the urns) conducted behind the veil.

- To describe the HMM formally, the following model
notation for an HMM can be used.
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T = length of the observation sequence, 0;,0,, ...,07
(number of coloured balls observed in our experiment)

N = number of states in the model (number of urns)

.h = number of observation symbols (number of colours
in use with the balls)

S = {s}, a set of states (A state can be considered to
Possess some measurable, distinctive properties of
events). For simplicity, state ;i at time ¢ may be
denoted by s,=i when ambiguity does not exist.

v = {vy0g,...,9.}, a discrete set of possible symbol
observations. O, belongs to one such observation
symbo]. .
A = {ayla;=Pr(s,,, =Jls;=i) }, state transition prob-
ability distribution, where a;; denotes the transition
probability from state i to state ;.

B = {510, | 50, = Pr(0,|s,=)}, For each state!,
there is a corresponding output probability (discrete
probability distributions in the discrete case and
continuous Probability density functions in the
continuous case); and all of these output probabhilities
represent random variables or stochastic processes to be
modelled. In the discrete HMM, it refers to the
probability of generating some discrete symbol v, in
state j, which can be denoted simply by b,(k). In the
continuous HMM, it denotes a probability density
function for emission of observations O, where 0, is
often denoted by x,. This difference between the
discrete HMM and the continuous HMM leads to
different re-estimation algorithms for the model
parameters. .

7 = {z| w;=Pr(s, =)}, initial state distribution.

~ .
- The state-dependent output probability is a apecial case of the
trensition-dependent one.
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An HMM can be represented by using the compact
notation A=(A B «). Specification of an HMM involves the
choice of the number of states, N, the number of discrete
symbols L, and specification of three probability densities
with matrix form A, B, and #. A set of initial states S; and
final states Sy can also be defined. Thus, transitions must
start from one of S; and end at one of Sp. Let N; and Ny
denote the number of initial states and final states
respectively. In practice, N; and Ny are often chosen to be
unity,

The urn and ball experiment can be modelled by an
HMM with the above definitions, where each state, i,
corresponds to a specific urn, and output probabilities, 5;(0),
are defined for the coloured balls observable in each state,
i.e. the probability distribution of coloured balls in each urn.
The observation symbol, v, is the colour of the ball selected
from the urns. The choice of urns is modelled by the initial
state distribution and by the state tranmsition probability
distribution. Figure 5.2.2. shows an example of such an
HMM. The transition probabilities are labelled in the figure;

Output probabilitiy distribution

Figure 5.2.2. Example of a simple hidden Markov model.
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the output probabilities associated with each state are also
illustrated. If the model is looked at generatively, the
Markov chain syntheses a sequence of states (urns), and the
~output probability distributions then turn the sequence of
states into a time series (observed sequence of coloured
balls). The observed time series gives evidence about the

hidden state sequence and the parameters of the generating
model.

In a first-order HMM, there are two assumptions. The
first is the Markou assumption, i.e. at each observation time,
t, a new state is entered based on the transition probability,
which only depends on the previous state. Note that the
transition may allow the process to remain in the previous
state. The second assumption is the oufput-independence
assumption, i.e. the output probability depends only on the
state at that time regardless of when and how the state is
entered. Although these assumptions severely limit the lgca}
memory of first-order HMMs, they reduce the number of free
parameters, and also make learning and decoding algorithms
extremely efficient. Efforts to model time correlations
explicitly can be found in [5,14],

In statistical modelling, free parameters refer to those
parameters that will be estimated from observations, and
correspond to the most important factor in statistical system
design. Even though inadequate assumptions are made, the
system may provide better performance if such assumptions
can drastically reduce the overall number of free parameters.
Some insight into this problem can be gained from
considering an analogous problem in curve fitting. Suppose
we have several available data points and several candidate
curves for fitting them and these data points have been
obtained by adding Zero-mean, independent noise from a
Parabola. Of all the possible polynomials, a parabola should
give the best fit, assuming that we are interested in fitting
unknown data chtained from the same parabola as well as
the points at hand. As noise exists, if the number of sample
points is limited, a straight line may fit the given data even
better than the parabola, though curves fitted from g larger
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Figure 5.2.3. Fitting curves to a set of samples.

data set might be quite different. On the other hand, a
higher order polynomial can fit the given data perfectly, but
is of no use to predict unknown data. Indeed, many more
sample points would be needed to get a good fit with a
higher order polynomial than a low order polynomial
because more parameters need to be estimated for the higher
order polynomial.

5.3. Basic Algorithms for HMMs

Given the definition of HMMs, there are three key
problems:

(1) The Evaluation Problem: Given the observation
sequence O = 0,,0,,...,0r, and the model A=(A B},
the problem is how to compute Pr(OjA), the probability
that this observed sequence was produced by the model,
This problem can also be viewed as: given several
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competing models and a sequence of observations, how
do we choose the model which best matches the
observations for the purpose of classification or
recognition.

{(2) The Estimation Problem: Given the observation
sequence O, how do we adjust the model parameters A
= (A,B,7) to maximise Pr(OJA). The problem concerns
how to optimise the model parameters sc¢ as to best
describe how the observations have come about.

(3) The Decoding Problem: Given the observation sequence
O, what is the most likely state sequence S = 81,9287
according to some optimality criterion. This relates to
recovery of the hidden part of the model.

Formal mathematical solutions to these problems will
be presented in the following sections. It can be shown that
the three problems can be closely related under the same
probabilistic framework.

3.3.1. Forward-backward algorithm

The most straightforward way of computing the
probability of an observation is through enumerating every
possible state sequence of length T (the number of
observations). For every fixed state sequence 8 =38,,89,...,57,
because of our assumptions, the probability of the
observation sequence O is Pr{Q|8,A), where

Pr(0]S,\) = b, (015,09 - - - b, (Op) (5.3.1)

The probability of such a state sequence S, on the other
hand, is
Pr(S[A) = Mo Gy ayBpp, " "

&p_ &
v (5.3.2)
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where q5e, denotes 7,, for simplicity.
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The joint probability of O and S, i.e. the probability
that O and § occur simultaneously, is simply the product of
the above two terms.

Pr(0,8[A) = Pr(0{S,M)Pr(S{A) (5.3.3)

The probability Pr(Of}A) is the summation of Eq. (5.3.3)
over all possible state sequences:

Pr(O|M) = X Pr(0|S,\Pr(S|A)
all § .

T
M :n-? 1% &-.AOL

el § t=1

Il

(5.3.49)

It

From Eq. (5.3.4) it can be seen that a transition starts
from an initial state (at time #=1) with probability a,,
(w,,), generating the symbol O, with the output probability
@._AO_V in the corresponding state s,, and a transition is then
made from the initial state s; to state $y with transition
probability @, ,,, 8nd generating symbol O, with output
probability b;,(03) attached to the corresponding state s,.
This process continues until the last transition from state
s7—3 to state sy with the transition probability s, ey 80d
output probability o&.ai generating symbol Oy is reached.

It should be noted that the computational load for such
a process is of the order of O(NT) if such a direct definition is
used without careful consideration. At every time
¢=12,..T, there are N possible states to go through.
Fortunately, given that there are only N states, all passible
state sequences have to be remerged into these N states ne
matter how long the observation sequence is. Thus a more
efficient algorithm can be derived based on these
characteristics. Such an algorithm is called the
forward —backward algorithm [11].

The forward variable can be first defined as:
nnﬁmv = mﬁﬁowm0m~...-°u-m~”m—?v ﬁm.w.mv
This is actually the probability of the partial observation
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sequence to time ¢ and state i which is reached at time ¢,
given the model A. This probability can be calculated
inductively, as follows:

Forward algorithm

Step 1: o,(i) = wib(0)), for all states i (if ; ¢ S;
S otherwise «,=0)

4 zn-- se m;=

Step 2: Calculating a() along the time axis, for

t=2,..T, and all states J, compute:

@) = [ Da;_1(i)a)b;(0) (5.3.6)
Step 3: Final probability is given by:
Prold) = Y ard)

me..., T (6.3.7)

In the above forward iteration, Step 1 initialises the
forward probabilities with the nitial probability for all
states. Eq. (5.3.6) illustrates that state J can be reached at
time ¢ from all the possible states i at time ¢£—1. Note that
@;_1(i) is the probability of the joint event that the sequence
0,,04,...,0,_, is observed and the Jast state is ¢: thus the
product «,_y(i)a; is then the probability that the joint
events 0,,0y,.,0,., are observed and state J i3 reached at
time ¢ through state i at time £-1. Summing this product
over all possible states i at time ¢—1 results in the
probability of state j being reached at time ¢ through all the
previous partial ohservations. Multiplication by b{0,), the
observation probability attached to state J which produces O,
results in a,(j), the probability of the new observation
sequence 0,,0,,..,0, ,,0, at time ¢ and state J-

Step 3 gives the desired calculation of Pr{O|XA) as the
sum of the final forward variables ap{i) at final states. This
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is s0 because ap(i) = Pr(0,,0,,...07,87=i|\) and the
transitions must end at one of Sj.

The computation in the caleulation of a,j) is of the
order of O(N®T). An example of the recursive computation
for the forward variable using the model given in Figure
5.2.2 ia illustrated in Figure 5.3.1. The computation leads to
a lattice structure in which only legal transitions from an
originating state { to a destination state J is allowed. Each
column of states for time ¢—1 is completely computed before
going to time ¢, the next column. When the states in the last
column have been considered, the final state in the final
column contains the probability of generating the given
observation sequence 0. :

In a similar way a backward variable Bi(i) can be
defined as:

Bi) = Pr(041,0,43,..,0r|5:=i,A) (5.3.8)

i.e. the probability of the partial observation sequence from
£+1 to the final observation T, given state [ at time ¢ and

Observation, time:

Figure 5.3.1. Itlustration of computation
for the forward variables.
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the model A. This backward variable can also be solved
inductively in a manner similar o the forward variable a()
as follows:

Backward algorithm

Step 1: 84(i) = IH|. for all states i € Sy, otherwise

Np
Br(i)=0;
Step 2: Calculating B() along the time axis, for
t=T-1,7-2,.,1 and all states J: compute:

BG) = 1 20;5,(0;4 By 11()] (5.3.9)
Step 3: Final probability is given by:
Pr(O|A) = mMm.. 7:5,(0DP,() (5.3.10)
I 't .

Step 1 arbitrarily defines Br(i) to be 1/Ny for all final
states. Step 2 shows that in order to have been in state j at
time ¢, and to accounts for the rest of the observation
Sequence, a transition from state j to every one of the
possible states at time #+41 must be made, which accounts
for the observation symbol O,,, in the corresponding state,
and then accounts for the rest of the observation sequence.
The computation complexity of B8,(i) is similar to that of
a,(é), which also produces a lattice with observation length
and state number.

As mentioned above, both the forward and backward
algorithms can be used to compute Pr(O]A) for the
evaluation problem. They can also be used together to
formulate a solution to the problem of model parameter
estimation as discussed in Section 53.3.
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5.3.2. Viterbi algorithm

The hidden part of HMMs, ie. the state sequence,
cannot be uncovered, but can be interpreted in some
meaningful way. A typical use of the recovered state
sequence 1s to learn about the structure of the model, and to
get average statistics, behaviour, etc. within individual
states. There are several possible ways to find the optimal
state sequence associated with the given observation

- sequence. One possible optimality criterion is to choose the

states, s,, which are in the best path with highest
probability, ie with maximam Pr(0,8{A). [ X formal

Technique for finding this single best state sequence is called
‘the Viterbi algorithm [13].| It is very similar to the DTW'

algorithm discussed in Chapter 3, where the transition
information is neglected and speech data such as the LPC
cepstrum  are  wusually  stored  without further
parameterisation.

Viterbi algorithm

Step 1: Initialisation. For all states ; ,

@—.Anw"an@hﬁopu

¥(i)=0;
Step 2: Recursion. From time ¢—2 to T, for all states
4

muC.uHa_.mummulﬁvnt“_?ﬁ@b

¥,(j)=argmax[8, _,(; Ja;]

[

Step 3: Termination. (* indicates the optimised

results),
p* =Max[87(s)]
nmr.w_w
mmnmnm:ﬁmuaimvu_
hm.m‘_m.

Step 4: Path (state sequence) backtracking. From
time 7'—1 to 1
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The Viterbi algorithm can also be used in score
evaluation. As has already been explained in the previous
sections, the forward —backward algorithm can be used in
obtaining the probability Pr(OA). This probability is the
summation of Pr(Q,S|A) over all possible state sequences S,
while the Viterbi algorithm only efficiently finds the
maximum of Pr(Q,S|A) over all . Therefore, the Viterbi
algorithm can be viewed as a special case of the
forward ~backward algorithm.  For  speech signals,
experiments show that gmm.u_”mlo.m_?: may not represent

well the summation for Pr(O|\), especially in the HMM
parameter estimation procedure, although the probabilities
obtained from the forward and Viterhi algorithms may be
very close [12]. In such cases, the forward-—backward
algorithm may work more robustly than the Viterbi
algorithm. This is achieved for an increase in computational
complexity since in the forward —backward algorithm all the
paths must be taken into account. On the other hand, the
Viterbi algorithm is extremely efficient since it can operate
in the logarithm domain using only additions. Also it is
possible to obtain the state sequence at the same time.
Because of its advantages, it has been widely used in many
speech recognition systems [7,12].

5.3.3. Baum-Welch re-estimation algorithm

The most difficult problem in HMM is how to adjust the
model parameters (A, B, #) to maximise the probability of
the observation sequence given the model. There is no
known way to solve this analytically for a maxzimum
likelihood mode! as discussed in Chapter 2. Therefore an
iterative algorithm or gradient technique for optimisation is
used. The iterative algorithm used in HMM-based speech
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recognition is known as the Baum— Welch algorithm (3).
This has the same optimisation techniques as the EM
algorithm for the mixture density problems discussed in
Chapter 2. Here, the unobservable data are a sequence of
hidden states, §. The iterative algorithm will be discussed
from an intuitive point of view here. A formal proof from an
information-theoretic point of view will be given in the next
section.

The purpose here is to obtain parameters of the model
from observations. If the model parameters are known, the
forward—backward algorithm can be used to evaluate
probabilities produced by given model parameters for given
observations. We can then make an estimation of original
model parameters based on current probabilities.

Consider any model whose parameters A contain no
zero values. Probability computations are, for the moment,
to be based on this model, 23 if it were the true model. By
using the forward —backward algorithm on such a model, the
a posterior probability of transitions Y, from state i to state
J, conditioned on the observation sequence and the model
can be computed as;

Ydij) = m.lmhﬂm.mﬁiﬂ.\,_o.yw
ali)a;b{0, 4 B, 41()
Pr{Q|A)
ali)ayb;(0,, )B4 ()

D ark)

k€S,

(5.3.11)

As illustrated in Figure 5.3.2, y,(i,j} is the probability
of a path being in state i at time ¢ and making a transition
to state j at time ¢+1, given the observation sequence and
the model. Obviously, this joint event occurs with probability
a,(i), which accounts for the path terminating in state i at
time ¢, multiplied by a;;6;(0y 41), which accounts for the local
transition from state i, multiplied by B.+1(j), which accounts
for the path being in state j at {ime ¢ +1.
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state
fAH D
Transition : - . .
ﬁUW T ..n(u.._i...
t+1  t+2
Observation, time

Figure 5.3.2. lllustration of computation for gamma values.

Similarly, the posterior probability of being in state i
at time ¢, y,(i), given the observation sequence and model, is

Y:(i) = Pr{s,=i|O,A)
a(i)B,(i)

Y, ark)

k€Sp

(5.3.12)

From Eq. (6.3.12), it can be observed that v:{i}) can be
computed from M“ﬁc.& if t<T. Since such a computation

J .
involves only additions, it is generally better to compute
Ye(i) from y,(i /) rather than from the forward and backward
variables directly,

Recalling the urn and ball experiment, (state
corresponding te the urn, and output probabilities cor-
responding to the colour ball distributions), it can be seen

that ¢(1) is the expected number of draws from urn
tE0, =black

1 (state 1) that yield the ball with %o_ocn black, given the

c_ummwmmmas and model. Similarly, Mﬁﬁv is the mnvmmn&
=1
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number of draws from urn 1, again conditioned on the
observations and the model. [t is intuitively appealing to use

the evidence to -.menmu. original output prohabilities,

bilblack), by D, 1,1/ D y1). A new model X can then
amQ-.HEnn& t=1

be created in such a manner to improve estimates
iteratively.

In general, the physical meaning of a; is the

probability of the transition from state i to state J- Thus the
T-1 T-1

ratio M Y g) M Y:(i) is an estimate of the probability
e=1 i=1

@;;. This ratio may be takenm as a new estimate, @, of a;.

That is

-1
D vli)
t=1

(5.3.13)

Similarly, the physical meaning of bi{k) is the
probability of observation symbel v, occurring in state 7.
This can be computed as the frequency of occurrence of
observation symbol v, relative to the frequency of occurrence
of any observation symbol in state J. Summation of y,(i} over
the time index ¢ is the expected number of times that state i
is visited. (Note that summation over time index t excluding
the last moment 7 is the expected number of transitions out
of state i.) Thus b;(k) can be re-estimated as:
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M {142

- hmanuﬁk
Mﬁcv
i=1

Finally, new estimates of the initial state probabilities
may be obtained from:

7 = 1100 (5.3.15)

(5.3.14)

It can be shown that either:

1. the initial model A defines a critical point of the
likelihood function, where new estimates equal old
ones, or

2. moedel A is more likely in the sense that
Pr(O|A)=Pr(0|)), i.e. new model estimates are more
likely to produce the given observation sequence O,

Thus if X is iteratively used to replace A and repeat the
ahove re-estimation calculation, it can be guaranteed that
Pr(OjA) can be improved until some limiting point is
reached. Eq. (5.3.12) to (5.3.14) are instances of the
Baum -~ Welch re-estimation algorithm [3], which has the
same form as the EM algorithm discussed in Chapter 2. As a
side note, if any set of probabilities in an HMM is fixed,
maximum likelihood estimates of the remaining parameters
can still be estimated the same way as before; and the
likelihood should also be improved iteratively. This is often
useful for system debugging as a divide — conquer strategy.
Another useful debugging method is based on the fact that
Pr(0|\) should be the same whether it is calculated from
forward or backward probabilities, i.e.
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PriO|A) = . ap(i)
i€85

2 mb (0B

OB,

It is implied by the content of Baum and Eagon [1] and
Petrie [10) that the true mode! can be recovered from a
sufficiently long observation sequence except for some
caveats, such as symmetries associated with the naming of
states and ambiguities caused by a true model with identical
colour balls in each urn. Therefore, the veil between
observations and HMM can under certain conditions be
successfully lifted.

Note that a single observation sequence is not enough
for re-estimation of the HMM parameters for practical
speech recognition. The appropriate training data should be
a set of independent observation sequences from the same
source. For example, if each HMM represents a word in a
word-based speech recognition system, several utterances for
the same word are generally required to re-estimate the
HMM parameters.. The re-estimation formulas of Eq.
(5.3.13) to (5.3.15) can be easily extended to such multiple

observation sequences. Let O¥ = [(01,0? . . 0™] denote
the set of m observation sequences, where O"=
£, m....‘oﬁ is the nth training sequence with T,

observations. Assuming that observation sequences are
independent of each other, the parameter: estimation of
HMM is then based on the maximisation of .

logPr(OM|A) = Y logPr(0"|\) _ (5.3.16)

a=1

Let M._.Emc..w denote the expected number of transitions from

state i to state j estimated from O". The average expected

number of transitions, M._:Q:..u is the summation of ¥{(i,j)
t
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with respect to n. Thus, the re-estimation equation for the
transition probability, a;;, can be computed:

T,—1
DI IRIR)
.|a.aa|“u_
2 2 Svas

n t=1 i

ﬂms., =

(6.3.17)

Let Mﬁa@ denote the expectation of being in state ; at time
¢

¢t estimated from O~, Similarly, Eq. (5.3.14) can be extended
to multiple observation sequences as:

2 PR

- " hmou_w“—._v

&..“_an = T
_ MM.::S

n =1

(56.3.18)

5.4. Proof of the Re-estimation Algorithm

The original proof of the Baum—Welch algorithm,
which dealt specifically with a finite alphabet and general
output distributions, appeared in [1]. A generalised proof
was then based on constructing dn information-theoretic Q-
function, i.e. Kullback — Leibler number {3,6]. This are
actually the same as the @-function of the EM algorithm for
mixture .densities discussed in Chapter 4. Here, the
unobservable data are a sequence of hidden states, S. For
models A and A, the Q-function can be defined as;

| H |
>_>H
QAN = 5o _Hm?ab_»:ﬁ?ob?. (5.4.1)
Here, QA A) is considered as a function of A in the
maximisation procedure. Therefore 1/Pr(OJ]A) can be
considered as a constant if there is only one 0. With such
an auxiliary function, it can be shown that .

Section 5.4. y 159

Theorem 5.4.1. _ .
QAMNZQAN = Pr(O]A)=Pr(O|)\). The inequality is
strict unless Pr(QjA)=Pr(0|A).

Proof: From the concavity of the log function it follows

that
PrO[A) _ Pr(Q,S|\) Pr(0,S|X)
8 promn — 8 2 B0 PrOS|A)
ats PriOfX) Pr(0,8|2)

= QAN —QAA)

It can also be seen that A is a critical point of Pr(O|A)
if and only if it is a critical point of @ as a functien of
A. For a broad class of models, @, as a function of A,
has a single critical point and this point is its unique
global maximum (see Chapter 6). From Theorem 541,
we have

ProlN) 00 5
log s ZAAN-QAN. | (543

If a new model A that makes the right-hand side of Eq.
(5.4.2) positive can be found, it means that the model
re-estimation algorithm can be guaranteed to improve
the Pr(OJA). Clearly, the guaranteed improvement by
this method results in A, which maximises QAN
unless a critical point is reached.

The remarkable fact of the Baum — Welch algorithm is
that Q(A,)) attains its maximum when X is related to A by
Eq. (5.3.13) to (5.3.15). To show this let the state sequence be
S =s,,8s, ...,57. Then

N T-1 r
logPr(0,8|0) =log#, + 2, loga,, -+ Dlogh,(0)  (5.49)
i=1 t=1
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Substituting Eq. (5.4.3) in (5.4.1} and regrouping terms
in the summations according to state transitions and
observed symbols, it can be seen that

L
i i k=1 i

Here
T-1
MvuaAMH”mﬁm.n-—rH”-\vo_yv
1

=

G PrO[\)

(5.4.5)
-1
= D ydi)
=1
> Pris;=j,0|A)

ted, =v,

Pr(O|A)

(5.4.6)

wﬁﬁhnﬂmuo—yv
Pr(OlN)

€ =

(5.4.7)

ﬁ—ﬁv

_Thus, according to Example 2.5.3 (see Section 2.5),
Q(A,A) can be maximised if

Y.{i.4)
€y =

= 71
S 2 D)

i t=1"j

9.“.__. =

(5.4.8)

y
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— i €D, =n

bk = B o T (5.4.9)
M&Ls 2v0)
& t

T= — = (i)

e ., Tt (5.4.10)

These are recognised as the Baum— Welch re-estimation
formulas.

The Baum —Welch re-estimation algorithm can also be
proved from. several different points of view. Note that the
re-estimation formulas update the mode! in such a way that
the constraints

M.,“.s =1, (5.4.11)
ey = 1, (5.4.12)
g

and

L

bik) = 1 (5.4.13)
k=1

are automatically satisfied at each iteration. The constraints
are required to make the HMM well defined. It is thus
natural to look at the training problem as a problem of
constrained optimisation of log Pr(O|\A), since it is usually
numerically better to maximise logPr{O|A) instead of
Pr(O|\) [4,8]. The maximisation of logPr(O[A) can be
solved by the classical Lagrange method. Let @ be the
Lagrangian of logPr{boldO|\) with respect to the constraints
Eq. (5.4.12).

Q = 1ogPr(0|N)+ ki Day;—1) (5.4.14)
i §
where the x; are the as yet :.:mmnonamumn Lagrange

multipliers. At a critical point of logPr{Q|A), it will be the
case that, for all i j,
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Q __ 1 o) . _

Multiplying Eq. (5.4.15) by a; and summing over j

1 aPr(O[A)
...M. Y PriO|\) da;; uMPq x
. Pr(0lN)
" Pr(O|A) day;

From Eq. (54.16) it may be seen that logPr(OJA) is

maximised when

. 2P0l 1

__ Y aay; PrOJA)

v S, Pr0jA) 1
% dan  PrON)

(5.4.16)

a (5.4.17)

A sgimilar argument can be made for the # and B
parameters. While it is true that solving (5.4.17) for ay is
analytically intractable, it can be used to provide some
useful insights inte the Baum— Welch re-estimation
formulas and alternatives to them for solving the training
problem. Since Pr(O|\) can be expressed as:

Pr(Q|A) HMMESQ%L_.AO?HVP:QV (5.4.18)

i

by differentiating Eq. (5.4.18) (note that since a; and B, also
contain a;;, the formula for differentiating a product must be
used here), aPr(0|A)/da;; is:

%o_»?_.
.Mnu L M_ 2 (i)6;(0, 4 1)B, 1)) - {5.4.19)
L = ) .

Cmmuwmﬂ.ah.gSmcvmmnﬁmmﬁ %lo_zxmacmsmﬂ.

(5.4.17) gives: .
; Tl :

__ Prio[y) WM.“ 4(8)2;16{(0¢ 418 41()

T e (5.4.20)

mvlc_g M wm Q“Amwnh.._.o‘..ﬁoﬁ._._vh:_Qw

i

If the left-hand side is considered as the re-estimate and the
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right-hand side is computed using the current values of the
variables, this leads to the Baum—Welch re-estimation
algorithm. Similarly, if #; and b are differentiated, then

%_“.W_z - M b;(0 1)ay;b;(0 )By(7) = b,(0 ) B,(i) (5.4.21)
I ¥ :

and

O S S+ 50 BG) (5429

i edmn,

can be obtained respectively. In Eq. (5.4.22), § denotes the
Kronecker 8 function. By substituting Eq. (56.4.21) and
(5.4.22) into their respective analogues of Eq. (5.4.17), the
re-estimation can be obtained respectively.

In general, let A be a parameter space, A
transformation T of the parameter space onto itself, ie.
T:A—A, is defined as:
£ P 1
o w.de.. P

(5.4.23)

where 7'(x); denotes the i jth coordinate of the image of x
under T. The parameter space is restricted to be the
manifold such that x;;=0 for all i,j and MRqHH for all ;.

4

Thus the re-estimation algorithm discussed above is a special
case of the transformation Eq. (5.4.23) with P a particular
homogeneous polynomial in values x; having positive
ceefficients. Here the z;; include (A,B,7) of the HMM. Baum
and Eagon (1] have shown that for any such polynomial
P[T(x)]>P(x) except if x is a critical point of P, Thus the
transformation T is appropriately called a growth
transformation. The conditions under which 7 is a growth
transformation were relaxed later to include all polynomials
with positive coefficients (2], and P(nTx)+(1-w)x]=P(x)
for 0= =1 was also proved.
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For multiple observation S€quences, the Q-function can
be defined g the summation of each Q@-function
noﬁmmmcu&nm to the nth observation sequence Q"
Following Theorem 54.1, it can be seen that Ewnmn_mmmﬂcn.
of the Q-function wil lead to maximisation of Pr(O¥|)
From Eq. (5.4.4), it can be easily verified that r .

formulas Eq. (5.3.17) and (5.3.18) stang. ©ostimation

8.5, m:EEmww
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CHAPTER 51X

CONTINUQUS HIDDEN MARKOV MODELS

In this chapter we will discuss theories related to
continucus mixture HMMs. If the observation does not come
from a finite set, but from some set of continuous points in
Euclidean d-space, the discrete output distribution b;(k) can
then be extended to the continuous sutput probability
density function. For speech recognition, this implies that
the vector quantisation procedure is unnecessary. Thus the
inherent quantisation error can be eliminated.

The Baum —Welch re-estimation algorithm discussed in
Section 5.3.3 can be extended to estimate continuous
probability density functions with the help of the
Kullback — Leibler statistic, the Q-function [1,2]. As
discussed in Chapter 5, the @-function is one of the main
mathematical foundations of the theory, in that the
parameter re-estimates can be characterised as the critical
point of it. -Baum et al. [1,2] generalised the method to
continuous output density functions, which require that the
probability density functions be strictly log concave. This
method is applicable to the Gaussian, Poisson, and Gamma
distributions but not to the Cauchy distribution. Liporace [7]
redefined the @-function, and successfully relaxed the
requirement s0 as to accommodate a broad class of
elliptically symmetric density functions. Juang {6] further
expanded the estimation algorithm to cope with finite
mixtures of strictly log concave and/or elliptically symmetric
density functions. In this chapter we will first review the
Liporace proof to the general continuous parameter re-
estimation formulas, and then discuss continuous mixture
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models, which are necessary to understand the unified
modelling theory presented in the next chapter.

6.1. Continuous HMM

In this section we will first discuss general re-
estimation formulas for the single mixture continuous HMM
that is applicable to a broad class of elliptically symmetric
density functions. As direct applications, examples of the
Gaussian density function are then included.

6.1.1. General case

In a manner similar to the discrete HMM, for a given
continuous observation sequence X¢RY and a particular
choice of HMM A, the objective in maximum likelihood
estimation is to maximise the probability density function,
f(X{X), over all parameters in A. The global density of X can
be written as

FXIA) = D FX,8|0)

all 8
T (6.1.1)
M Hnwﬁr_nn&.%nhv

s&eum @40, = W, for simplicity. As a general case, all of the

cutput density functions can be assumed to have ellipsoidal
symmetry, i.e. each b;(x) has the form

i

L=

|2 12 tgutx)) 6.1.3)
where ¢;(x) is a positive definite quadratic form,
Qmmﬁv = AH - .:.mvuM-.I MAN —_ Tﬁw AOH WV

The d-by-d scaling matrices 3; (for all states i) are positive-
definite and symmetric, and location vectors #; are arbitrary
points in the Euclidean d-space. Following Liporace’s
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resuits (7], one extra assumption for elliptically symmetric
densities i3 necessary: if the elliptically symmetric density
b(x) satisfies the comsistency conditions of Kolmogorov [4], it
can be represented as

b = [ Nex, p, u?S)dG(w) ©6.1.4)

for some probability distribution G on [0, =), where N() is
the multivariate Gaussian density with mean vector ; and
covariance matrix 222, Thus an elliptically symmetric
density function can be expressed as a continuous convex
combination of related Gaussian densities. It is interesting
that the distribution G need not be known. By means of Eq.
(6.1.4), f(X,S|A) can be expressed as an integral over the 7-
fold product space U = [0, ©)T :

fIX,S[N)

T
._.G. M.MQ-Tn.nzﬁhct&.:mM&vR@A:-v < dGup)
. (6.1.5)

ft

Eyf(X,8,U1A),

where U =(u,,...,ur)’, Ey; denotes the average with respect to
T-fold distribution G(uy) " - - G(uy) and
T
fX, 8, UIN) = [1a,_Nixop, u25,)
t=1
In a similar manner to the discrete HMM, the re-
estimation transformation is based on an auxiliary function

QAN of current parameters A and new parameters A
defined by

QAN = :fm_ﬂwiﬂm_e_&ﬁ,m_ Ml (6.1.6a)
QA can be considered as a function of A in the
optimisation procedure. Therefore, 1/f(X|A) can be treated
as a constant if there is only one observation sequence X to
be considered. The proof based on Eq. (6.1.6a) is valid only if
the output probability density is strictly log concave. For a
broad class of elliptically symmetric density functions, the
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Q-function can be generalised as
QAN) = s SEGFKSUIMogf X S, U (61.61)
f(X[A) 5

The following discussion will be based on Eq. (6.1.6b); it can
be simplified to Eq. (6.1.6a) which is only a special case of
Eq. (6.1.6b).

The utility of Q(A,A) is similar to that discussed in
Theorem 5.4.1, i.e. .

QAN 2 QAN = FXIX) = AXIN). (6.1.7)

Under mild orthodoxy conditions, Q(A,A) has additional
useful properties summarised in the following theorem.

Theorem 6.1.1.
If for each state Js

()  b;(x) has the representation as Eq. (6.1.4); and
(ii) there are among Xy,.... Xy, d+1 observations, any d of
which are linearly independent;

then @(A,A) has a unique global maximum as a fanction of
A, and this maximum is the one and only critical point.

Proof: The proof involves the following three
arguments.

(1) The second derivative of Q along any direction in
the parameter space is strictly negative at a critical
point. This implies that any critical point is a relative
maximum and that if there are more than one they are
isolated.

(2) QAN > —w ag A approaches the finite boundary of
the parameter space or the point-at «. The property
implies that the global maximum is a critical point.

(3) The critical point is unique.

Detailed mathematical arguments can be ?.EE in [7]. .

g — - -
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Theorem §.1.2.
A parameter A is a eritical point of the likelihood f(X|A) if
and only if it is a critical point of the @-fanction.

Proof: Let V) be the gradient vector. A critical point of
f(X|A) is characterised by V/(X[A) = 0.

XA
= VA XEuf(X,S,UIN)
8

= TEGVAFX,S,UIN)
5

= DEuf(X,S,U|NiVxlogf(X,S,U|\)]
s

Thus VAf(X|\)=0 if and only if VzQ(AN)[5_,=0 at
A=A

Based on Theorems 6.1.1 and 6.1.2, the re-estimation
transformation can be ‘explicitly derived under the
constraints of

1) Mmh....,nf for each state {; and
J

(2) the scaling matrices I, are positive definite for each
state i,

Since

T
1 M @c %AN.M..Q;VMEGNM.TE

AN =
QAN = xim 2 &

+ (1/2)log] 2, Y| — dlogu, ~ (d/2)log(2m) (6.1.8)

~ 2uPx B, ), N~ )]

maximisation of a; is similar to the discrete HMM as the
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individual auxiliary function for a; has the same form

.Eu_onS. which  as a function of {y:}, subject to the
J
constraints Muc_ = 1 and y;=0, attains a global maximum

. j
at the single point ¥i= S\MET

The key problem here is to maximise the @-function
with respect to p and =, Let 9Q/au; denote the d-
dimensional vector of derivatives of Q(A,A) with respect to
the components of #;. Here p; can be obtained as the
solution of

0 = QAN
o,
= DEGfXS,UN 3 27 &~ Eptu?
s nmﬂ._.,@

where T/(S) = {tls,= .m.... Interchanging the order of sum-
mation and premultiplying by %, we have

T
0=2 3 Ey(fXS,UN/udZ \x,— (6.1.9)
t=1 SES) : .
where S;(¢t) = *.m_mu =7} Observe that

Y ERFX,S,UIN/ud
mmmu.:v

differs from £(X,s,=j|A) only in that b,(x,) is replaced by
By w7 N 1,625 dG (uy) (6.1.10)

According to Eq. . (6.14), Eq. (6.1.10) is equal to
-Nm@hﬁuu\m@ﬁhv_uun.. Therefore .

2 Eolf(X,S UIN/ud) = p,(DBAG)
mmm.___.s

where
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. ) ab.(x)
anv = MﬂulﬂAﬁVﬂﬁmH'Nmﬂ“Anw _IHHL mm-H.HHu
Thus
T
MPQVPQUE
i =21 (6.1.12)

T
Mscﬁs
t=

Similarly, Z; can be obtained as

T
M?S.So:b:@?: i

zZj = T (6.1.13)
M"PS?S

t=

It can be seen that each M.. is positive definite. If y is any d-
dimensional vector,

T
YEy = eyt~ =0
t=1

where c;(t) >0. The inequality is strict provided that for any
p; the vectors {x,—p;} span the d-dimensional observation
space, i.e. if observation x satisfies the orthodoxy condition
mentioned in Theorem 6.1.1.

6.1.2. Gaussian density function

When the above re-estimation formulas are wEu:mm to
the multivariate Gaussian densities, p,(j} = a,(j). Therefore,
Eq. (6.1.12) and (6.1.13) become

il
M#Qv!
— i=1

i = T
M“.S_O.w
t=1

and

(6.1.14)
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T
2~ ) x~ ) |
= t=1
2; = _, (6.1.15)
M.ﬁcu
t=1

where v,(j) is the a posteriori probability which has the
same meaning as used for the discrete HMM. The
interpretation of Eq. (6.1.14) and Eq. (6.1.15) is relatively
simple. In the extreme case where Y} equals 1 when x, is
from the state ; and 0 otherwise, j; and M.. are the mean
and corresponding sample covariance matrix of those
samples respectively. More generally, v,(j) is between 0 and
1, and all of the samples therefore play some role in the
estimates. Basically, the estimates can still be regarded as
weighted sample means and weighted sample covariance
matrices,

In practice, multiple independent observations have to
be used for parameter estimation. In a manner similar to Eq.
(6.3.17) and Eq. (5.3.18), summation with respect to
variables of multiple independent observations can be
applied to the denominator and numerators respectively.
Notice that Eq. (6.1.15) relies on the re-estimated mean
vector ji;, which is incenvenient to implement. Eq. (6.1.15)
can also be expressed as .

T
M.ﬁ@.unun“
=1

T
M.«hc_.v
i=1

In the abave equation, the first term depends on ¥: and x,,
which can be computed for each observation x, along with
other parameters. The second term can be computed after all
the observations are computed. Alternatively, a heuristic
re-estimation equation can be written as {6]

= —¢

= Wi . (6.1.16)

M....”
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T
2N —p) -
3, ==L _ 6.1.17)

T
M.«"C.v
=1

This is because the x are approximately equal to j in
contigueus iterations.

Referring to Eq. (4.2.11) and (4.2.12), the mixture
densities problem discussed in Chapter 4 can be considered
as a special case of this model in which the state transitions
are Markov of order zero with L states (N =L},

a; = p; J= 1,..,L foralli

i.e. no Markov properties are imposed on the densities.

6.2. Mixture Density Functions

The extent to which use of unimodal output denaities in
& speech recognition system is adequate depends on both the
signal processing in the system, and on the form of the word

" models used by the system. In a speaker-independent speech

recognition system, for example, because the vocal tracts of
women are normally shorter than those of men, the formant
frequencies for a given sound will tend to be higher in a
female voice than a male voice, It will then be important to
use at least bimodal output densities to model the male and
female voices for a given word. On the other hand, if the
signal processing algorithm can successfully perform some
speaker normalisation, this difference between male and
female may be removed and unimodal densities can be used.
This is only one aspect of the complicated speech modelling
problem. In practice, multimodal densities will definitely be
superior to unimodal densities if there are sufficient training
data, and this is generally required for speaker-independent
speech recognition. One way to model multimodal signals is
to use mixtures of unimodal distributions, such as Gaussian
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densities. Output distributions in the continuous mixture
HMM are then a mixture of unimodal densities. Another
approach is to use a large number of states based on
unimoedal densities [3]. In contrast to the discrete HMM, it
makes no difference if a mixture of discrete distributions is
used since the discrete output distributions can model any
multimodal densities.

In use of continuous probability density functions, the
first candidate for a family of output distributions is the
family of multivariate Gaussians, since

(1)  Gaussian mixture densities (with an appropriate chesen
mixture) can be used to approximate any continuous
Probability density function in the sense of minimising
the error between two density functions;

(2) by the central limit theorem, the distribution of the
sum of a large number of independent random
variables tends towards a Gaussian distribution; and

(8} the Gaussian distribution has the greatest entropy of
any distribution with a given variance.

Continuous HMMs based on other probability density
functions, such as Laplacian, K,-type [5), as well as the
Parzen estimation of the probability density functions [8]
have also been reported in the literature. These are not
considered further here beciuse of the advantages of
Gaussian density mentioned above.

The number of free parameters is very important in a
statistical speech recognition system. One way to reduce
drastically the number of free Parameters in the Gaussian
density based continuous HMM is to assume that the off-
diagonal terms in the covariance matrices are zero. This is a
reduction from O(d?) to O(d) in terms of both the amount of
computation and the number of free parameters to be

estimated. This means that less training data and time will ~

be required. The disadvantage is that the assumption that
different elements of the observation vector are uncorrelated
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may be so inaccurate as to degrade recognition accuracy
significantly. The extent to which this is the case depends on
the signal processing and the models used in a particular
system. It is often an empirical issue as to -whether the
computational expense of a full-covariance Gaussian is worth
the performance imprevement, if any. Even although
diagonal-covariance assumptions are almost surely incorrect,
the diagonal-covariance approach often provides better
performance than the full-covariance approach if the
training data are insufficient.

Formally, the probability density function B ={b;(x)}
attached to state j, 1=<j<N, if chosen as for Gaussian
mixture densities, can be written as:

M
bi(x) = Mn% br(x)
=t 6.2.1)

o
= Mn...wzmn.?s.M%v
k=1

where N(x,u,X) denotes a multi-dimensional Gaussian
density function of mean vector 4 and covariance matrix Z;
M denctes the number of mixture-components; and Cj is the
weight for the kth mixture component satisfying

M

Dea =1 (6.2.2)
k=1

so that

S bimdx =1. (6.2.3)

6.3. Continuous Mixture HMM

When b,(x) is represented by a mixture of densities as
Eq. (6.2.1), the summand in Eq. (6.1.1) over all § is, in fact,
the joint density f(X,S|A), which can be expressed as
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I

T
FESIN = []a, b, (x0
t=1

M M M
=Xy ¥ (6.3.1)

ki=thy=1  kp=i
T
Hmﬁu__hlunon}ﬁnb Jeork Cogky " Cophy

Let QT be the Tth Cartesian product of 2={1,2,... M},
which is defined as the branch alphabet. In the summand of
Eq. (6.3.1), it can be considered as the summation of:

T
&8 kN=]]a, ., C A (6.3.2)
t=1

Therefore, the joint probability density of the truncated
stochastic process X is

fXIN= 3 X8 KN ©(6.3.3)

§ geq?

Eq. (6.3.3) can be interpreted such that there are NT
possible stochastic state sequences that may lead to the
observation X, with each possible state sequence being a
superposition of M7 branch layers.

Similar to Eq. (6.1.6), an auxiliary function Q(A,X) of

two model points, A and A, given an observation X can be
written as:

?.MVH NAIN.[@%N_ X,S iy
Q M.aww Fxin OBfXSKN s

Here only strict log-concave densities will be considered for
simplicity. Similarly the Q-function can be redefined
extending to the case of elliptically symmetric density
functions.

From Eq.(6.3.2), the following decomposition can be
shown:
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logf(X,S,K|X)

T T T .
M_omma mt M_om&.,,g + M_omm.} (6.3.5)
=1 t=1 ..

=1

i

T-1 T T
logw, + M loga,,, .+ M_cm?}?hu+M_cmm..}

t=1 =1

Maximisation of the likelihood by way of re-estimation can
be accomplished on individual parameter sets owing to the
separability shown in Eq. (6.3.5). The separation of Eq.
(6.3.5) is the key to the increased versatility of a re-
estimation algorithm in accommodating mixture observation
densities. The auxiliary function can be rewritten in a
separated form:

QAN = IPLKSKIN | x5 k1N
T FX|N
T-1
L FXS KN = _
= MM FXIN) [logwr, + _muomn{_:
. T e
+ Dloghys (x) + logd,] (6.3.6)
=1 t=1
_ ) )
= QA + JQuAay) + 2 X Qs (Abj)
i i k=1
+ Q- (A,
J
where
olﬂy.mv = MM\.mmk_Nayu,—omal_n:
5 K

(6.3.7)

f

2 D sy =i, K|X,Mlogr,
i K

r-1
Qe = 2 2 Df=is =i K|XNlogs; (6.3.8)
j t=1 K
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T

oﬁ.m?mtu»m? =,k =kIX,\)logb(x,), (6.3.9)

and

Q,(AC tﬂM ;Mm Flse=j.ke =k|X,N)logay (6.3.10)

Formally, individual maximisation of Q. Oa (for all i), Dn

(for all j) subject to the respective mncnrwmn_n constraints is
the maximisation of individual functions which have the
same form as the discussed in the previous sections. Thus, a
global maximum at the single point can be obtained in a

similar manner. From. the discussion in Section 8. 1, when

bjx(x,) is strictly log concave or elliptically symmetric, 0«
has a unique global maximum that is a critical point of @.
(for all ).

The re-estimates that for fixed A maximise Q.. Q,, and
03 as a function of w,, a;, and ¢, respectively can be
n&niwn& as:

3 f(X,8,=i K|A)
- % fxa
™= > FEKN

< FXIN)

(6.3.11)

f(X,s1=i|2)
FX[N)
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qM.H 3 fEs= s = KN
FXIY

K

M M F(X,50= i K|N)
< FXN)
fX $:= 1,8 41=J|A)

= FXIN

FXose=i|A)
w.m FXIN

(6.3.12)

w F(X,5=j k= k|A)
“~ FXIN)

M \R»mulh_yv
a1 FXIN)

(6.3.13)

n;.wl

The intermediate probability density functions y,(i,f),
Yi) and {,(i,k) can be defined as:

.Ruﬁ.—»\w = ﬂﬁmn"mnm?f_.”&._xg ?v
FXyse=i,3 11 =7IA)

FIX|A)
¥ (6.3.14)
QR&P....._.. Mn&. F,&N_“::h“ +1()
= k=l for ls¢=T—1
M Q...A.mv
k€S
YAi) = f(s,=i|X, A)
_ F&s=ilN)
FXIA) (6.3.15)
= OB e
> arlk)
BE€Sy

and
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$ek) = fls,=jk,=k|X, \)
_ FXs =ik =k|)
B FXIA)
Ma:l_Amun_unma@a»ﬁnhvhwu@u (6.3.16)
= for 1<¢i<T

M ar(i)

i€Se

As a result, the new estimates of initial probabilities,
7;, and transition probabilities, a;;, can be expressed in a
similar way to Eq. (5.3.15) and (5.3.13). The only difference
from Eq.(5.3.15) and (5.3.13) is that 5/{(0;4y) in Eq. (5.3.15)
and (5.3.13) is replaced by the continuous mixture
probability density function of observation vector x.
Similarly, for the weighting coefficients, ¢ can be replaced
by:

T
Mﬁnc-.@v
G =g 6.3.17)

Maximisation of Ow.m;.m..._t with respect to b ip 18 a
well-known method for many familiar density functions. The
solution to the maximisation problem is, in general, obtained
through differentiation; i.e. find *mg,t, that satisfies:

qm;nuo.q_;‘mg.t

$ V5, bin(xe) (6.3.18)
= Dflse=j k=X —2 "
£=1 bi(xe)

where qu__»ﬁ._%ub denotes derivatives with respect to

parameters of m;. Thus, for the Gaussian mixture density
functions represented in wm. (6.2.1), the partial derivatives
are with respect to y;; and 23", and they are:

)
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ab (%) = = _
I.WI.| = N(& i, Z) 25 (x—jiy)

it.._& (6.3.19)
3 (x) - _ _
||n..~|||_| = PZAH,EFM%;M;Iﬁnit:xnlt%é

Substituting Eq. (6.3.19) in Eq. (6.3.18), it can be seen
that the solutions to Eq. (6.3.19), i.e. re-estimates #x and
Z;, can be given by

w.. FX,5,=,k, = k|\)
i= FIX|A)
W fX,5,=j ki=k|X)
=1 fX|N

X,

B =

(6.3.20)

M":I

$:G R)x,

Wuc..@v

-

M-—:l'.

t

1

S FXos =i k=kIN) .
M_. XN (X — fjn XXy — fLj)
=1

w F(X,5=7,k=k|A)
“ FX[A)

b
il

' ik

- (6.3.21)

whc.imXHh - m‘;vﬁﬁ - N....__L_
1

i=

T
Mwhcukv
t=1

The interpretation of Bq. (6.3.17), (6.3.20) and (6.3.21)
is similar to that of the discrete HMM. The re-estimation of
¢ is the ratio between the expected number of times that
the kth density in the mixture at state j is used, and the
expected number of times of being in state j. The re-
estimation of i is the ratio between the expected mean of
the kth density in state j and the expected number of times
of being in state j. Interpretation of X can be given in a
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similar manner. Notice that Eq. (6.3.20) and Eq. (6.3.21)
have identical forms to Eq. (4.2.11) and Eq. (4.2.12)
respectively except that the Markov property is imposed on
the posterior probability here.

6.4. Summary

The original @-function of Baum et al. provides a proof
for the continuous HMM with strict log-concave density
functions. The proof can be extended to accommodate a
broad class of elliptically symmetric density functions by
Liporace’s redefined Q-function, although, in practice, strict
log-concave density functions have already covered the most
widely used density functions such as Gaussian. Without
loss of genmerality, the finite mixture continuous HMM has
been discussed with the Caussian density function; it can
also be applied to elliptically symmetric density functions.

Although it is possible to quantise any continuous
observations via codebook, etc.,, there might be serious
degradation associated with such quantisation. The rationale
of the continuous HMM is that the continuous observations
can be modelled directly without quantisation. However, the
choice of different density functions to model a given
observation largely depends on the characteristics of the
observations. In addition, a single continuous probability
density function associated with eack state is usually not
enough to model complicated observations; and finite
mixture models are required. Furthermore, simple-minded
implementation of the continuocus mixture HMM may not
give any improvement at all compared with the discrete
HMM. A better usage of the continuous mixture HMM will
be discussed in the following chapters.
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CHAPTER SEVEN

UNIFIED THEORY:
SEMI-CONTINUOUS HIDDEN MARKOV
MODELS

Vector quantisation, the discrete HMM, and the
continuous mixture HMM have been introduced in previous
chapters, where the EM algorithm plays a key role in their
development. In practice, both the discrete HMM and the
continuous mixture HMM have their own advantages and
disadvantages. Traditionally, these two models have been
treated separately. A general model of these two distinctive
models is the semi-continuocus HMM, in which VQ, the
discrete HMM, and the continuous mixture HMM can be
unified. Like the continuous mixture HMM, the semi-
continuous HMM also has the modelling ability of large-
mixture probability density functions. In addition, the
number of free parameters and the computational complexity
can be reduced because all of the probability density
functions are tied together in the codebook. The semi-
continuous HMM thus provides a good solution to the confict
between detailed acoustic modelling and insufficient training
data. Compared with the discrete HMM, robustness can be
enhanced by using multiple codewords in deriving the semi-
continuous output probability; and the VQ codebook itself
can be optimised together with the HMM parameters in
terms of the maximum likelihood criterion. Such a unified
modelling can substantially minimise the information lost in
conventional VQ. In practice the speech recognition
accuracy of the semi-continuous HMM is better than both
continuous mixture HMMs and discrete HMMs.

)
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This chapter will highlight the unified modelling
theory concerning VQ, the discrete HMM, and the
continuous ‘mixture HMM. The @Q-function, once again,
serves here as the major mathematical underpinning. It will
be seen that all these theories can be developed based on the
general @-function with various simplifications.

7.1. Discrete HMM vs Continuons HMM

In the discrete HMM, VQ produces the closest codeword
from the codebook for each acoustic observation. This
mapping from continuous acoustic space to quantised
discrete space may cause serious quantisation errors for
subsequent hidden Markov modelling. To reduce VQ errors,
various smoothing techniques have been proposed
[9,13,14,16,21,23]). A distinctive technique is hidden
Markov modelling based on multiple VQ codebooks, which
has been shown to offer improved speech recognition
accuracy (6,14]. In the multiple VQ codebook approach, VQ
distortion can be significantly minimised by partitioning the
parameters into separate codebooks. Another disadvantage
of the discrete HMM is that the VQ codebook and the
discrete HMM are separately modelled, which may not be an
optimal combination for pattern classification [12]. The
discrete HMM which uses discrete output probability
distributions to model various acoustic events is inherently
superior to the continucus mixture HMM with 2 mixture of a
small number of probability density functions since the
discrete distributions could model events with any
distribution provided enough training data exist.

On the other hand, the continuous mixture HMM
models the acoustic observation directly using estimated
continuous probability density functions without VQ, and
has been shown to improve the recognition accuracy
compared with the discrete HMM [4,18,19). For speaker-
independent speech recognitior, a mixture of a large number
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of probability density functions [17,20) or a large number of
states in the single-mixture case [5] is generally required to
model the characteristics of different speakers, In addition, it
has been observed that some difficulties due to modelling
assumptions that introduce singularities may arise in the
continuous single mixture HMM [15), and a mixture of
densities are generally needed. However, mixtures of a large
number of probability density functions will considerably
increase not only the computational complexity, but also the
number of free parameters that require to be reliably
estimated. In addition, the continuous mixture HMM has to
be used with care as continuous probability density functions
make more assumptions than the discrete HMM, especially
when the diagonal covariance Gaussian probability density
is used for simplicity [4,19). Te obtain better recognition
accuracy, acoustic parameters must be well chosen according
to the assumption of the continuous probability density
functions used.

The fact that maximum mutual information parameter
estimation [4] has been shown to improve significantly the
performance of the maximum likelihood parameter
estimation for the continuous HMM but not for the discrete
HMM, can be considered as an indication that

(1) the effect of the VQ errors is an important factor in the
discrete HMM; and

(2}  selection of appropriate probability density functions is
an important factor for the continuous HMM.

As far as the computational complexity is concerned, in
the discrete HMM, the VQ computation depends on the
codebook size and distortion measure; computing the discrete
output probability of an ohservation is then a table-lookup.
On the other hand, in the continuous model, many
multiplication operations are required even when using the
simplest single-mixture, multivariate Gaussian density with
a diagonal covariance matrix because the total number of
density functions being matched is usually quite large.

Section 7.1. 4 189

7.2. Semi-Continuous HMM

In the discrete HMM, the discrete probability
distributions are sufficiently powerful to model any random
events with a reasonable number of parameters. The major
prablem with the discrete output probability is that the vQ
operation partitions the acoustic space into separate regions
according to some distortion measure. This introduces errors
since the partition operations may destroy the original signal
structure. To overcome this limitation, the VQ codebook can
be modelled as a family of finite mixture probability density
functions such that the distributions are overlapped, rather
than partitioned. Each codeword of the codebook can then be
represented by one of the probability density functions (say,
Gaussian) and may be used together with others to model
the acoustic event. The use of a parametric family of finite
mixture densities (a mixture density VQ) can then be closely
combined with the HMM methodology. From the continuous
mixture HMM point of view, the continuous probability
density functions in the continuous mixture HMM are tied
into the VQ codebook, where each codeword is represented as
a continuous probability density function. [Such a tying can
reduce the number of free parameters to b# estimated as well
as the computational complexity. From the discrete HMM
point of view, the partitioning of the VQ is unnecessary, and
ig replaced by the mixture density modelling with overlap,
which can effectively minimise the VQ errors. Thus, the VQ
problems and HMM modelling problems can be unified under
the same probabilistic framework to obtain an optimised
VQ/HMM combination, which forms the foundation of the
semi-continuous HMM.

7.2.1. Basic principles

Provided that each codeword of the VQ codebook is
represented by a continuous probability density functien, for
a given state s, of the HMM, the probability density function
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that produces a vector x can then be written as:
F%Hv = f(x|s,)

~. (7.2.1)
= M_. }M_&..{wl&,_mu
i=1 .

where L denotes the VQ codebook level. For the sake of
simplicity, the probability density functicn, f(x{v;,5,), can be
assumed to be independent of the Markov states s;. Thus,
for a given state i, Eq. (7.2.1) can be written as:

L
bi(x) = D f(x|v)Prv]s,=i)

i=1

L {(1.2.2)
= D F(x]ubi()

=1

This equation is the key to semi-continuous hidden Markov
modelling. The estimation of f(x|v;) is crucial in the system
design. In fact, Eq. (7.2.2) works in a similar way to other
non-parametric or heuristic methods, such as the HMM
based on the Parzen estimator [22], the fuzzy VQ [23], and
the multi-labelling VQ [16]. However, the representation
using a continuous probability density function can be more
conveniently extended into the unified modelling framework
than other heuristic techniques.

The central concept in semi-continuous hidden Markov
modelling is depicted in Figure 7.2.1. The VQ codebook
consists of a mixture of continuous probability density
functions (for example, each codeword may be represented by
& mean vector and a covariance matrix). Conventional vQ
operation produces a codeword index which has minimum
distortion to the given observation x. In the semi-continuous
HMM, VQ operation produces values of continuous
probability density functions f(x|v;) for all the codewords u;
(1=j=<L). These codebook density  functions are
subsequently used by the semi-continuous output probability
(Eq. (7.2.2)). The structure of the semi-continuous HMM can
be exactly the same as the discrete HMM. However, the
output probabilities in the semi-continuous HMM are not

)
)
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used directly as in the discrete HMM. In contrast, the VQ
codebook density functions, f(x{v;), are combined with the
discrete output probability as Eq. (7.2.2) to form a semi-
continuous output density function dynamically. The semi-
continuous output probability is thus 2 combination of
discrete model-dependent weighting coefficients with these
continuous VQ codebook probability density functions, Such
a representation can be used either as a feedback to the VQ
codebook to re-estimate the original VQ codebook together
with the HMM parameters, or for semi-continuous decoding.
Note that each discrete output probability is weighted by the
continuous conditional probability density function derived
from VQ. If these continuous VQ density functions are
considered as the continuous probability density funetions in
the continuous mixture HMM, this also resembles the I.-
mixture HMM with all the continuous output probability
density functions shared with each other in the vQ
codebook, and the discrete output probabilities in state i,
bi(j), become the weighting coefficients for the mixture
components. This is exactly the same as the tied mixture
continuous HMMs used in some speech recognition systems

[3]. _

Compared with the continuous mixture HMM, the
semi-continuous HMM can maintain the modelling ability of
large-mixture probability density functions. In addition, the
number of free parameters and the computational complexity
can be reduced because all the probability density functions
are tied together in the codebook, The semi-continuous HMM
thus provides a good solution to the conflict between detailed
acoustic modelling and insufficient training data. Compared
with the standard discrete HMM, robustness can be
enhanced by using multiple codewords in deriving the semi-
continuous output probability in a similar manner to fuzzy
VQ and multi-labelling VQ. However, the VQ codebook itself
can be optimised here together with the HMM parameters in
terms of the maximum likelihood criterion. Such a unified
modelling provides an elegant way to minimise the
information lost in conventional VQ, which cannot be



)

192 ¥ CHAPTER 7

obtained from fuzzy VQ or multi-labelling VQ.

In practice, Eq. (7.2.2) can be simplified by using the M
most significant values of f (x]v;) for each x without affecting
the performance. Experience has shown that values in the
range of 2—-8 are adequate. This can be conveniently
obtained during the VQ operations by sorting the VQ output
and keeping the M most significant values. Let 7{x) denocte
the set of VQ codewords, v;, for those most significant values
of f(x}uv;) of x. Then Eq. (7.2.2) can be rewritten as
bi(x) = M Fix|vpb; ()

o ot (7.2.3)

Since the number of VQ codewords in %(x) is of lower order
than the VQ level, Eq. (7.2.3) can significantly reduce the
amount of computational load for subsequent modelling
compared with Eq. (7.2.2). In the semi-continuous HMM,
most of the computational load lies in the calculation of the
continuous VQ density function. The computational
complexity of the semi-continuous HMM mainly depends on
the VQ level and the size of 7(x).

The semi-continuous output probability represented in
Eq. (7.2.3) also bridges the gap between the continuous
mixture HMM and the discrete HMM. If n(x) contains only
the most significant f(x|v;) (i.e. only the closest codeword to
x), the semi-continuous HMM degenerates to the discrete
HMM with a probability density codebook. On the other
hand, a large VQ codebook can be used such that each state
of the HMM contains a codeword (a probability density
function). The discrete cutput probability b,(j) in state { can
be defined as

1 if codeword j € state i

b = 0 otherwise (7.2.9)

Therefore, each state has its own codeword, i.e. a single
probability density function. The only term contributing to
the semi-continuous output probability at state i will be the
codeword from the state itself. This is the case for single-
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mixture continuous hidden Markov modelling. Of course, Eq.
{7.2.4) can be modified to let each state contain several
disjoint codewords extending to the case of the continuous
mixture HMM. From the above discusgion, it can be seen
that the semi-continuous HMM is more flexible and more
general than either the discrete HMM or the continuous
mixture HMM. The conventional HMM can be considered as
& special case of the semi-continuous HMM.

If the Gaussian density function is considered here
(other probability demsity functions can be applied in a
similar manner to those described in Chapter 6), given the
VQ codebook u;, the probability density function f(x]v;} can
be estimated with one of the following:

(1) the EM algorithm as described in Chapter 4;

(2) sample estimates of the covariance matrices based on
the conventional V@ codebook {91;

(3) Gaussian clustering techniques [7];

(4) feedback from semi-continuous hidden Markov
modelling, variants including collection of output
density functions in the continuous HMM to form a
codebook, and simplified feedback techniques [8,10],

As pointed out by Bahl, Jelinek, and Mercer (23,

It is possible to ollow feedback fram the decoder to the
acoustic processor but the mathematical consequences of
such a step are not well understood.

The unified modelling approach can be viewed as
preliminary attempts to describe such a feedback. Feedback

from semi-continuous hidden Markov modelling to vQ will
be discussed in the following sections.

7.2.2. Re-estimation formulas

Feedback from hidden Markov modelling to the VQ
codebook is a re-estimation problem in a manner similar to
the Baum~Welch algorithm, as used for both the discrete
HMM and the continuous mixture HMM. Here, only the
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Gaussian deasity function is considered owing to its
advantages. Other probability density functions can be
applied in principle in a similar way to those described in
Chapter 6.

In the semi-continuous HMM, if the b;(k) are
considered as the weighting coefficients {(c;) to mixture
probability density functions in the continuous mixture
HMM, the re-estimation algorithm for the weighting
coefficients (as discussed in Chapter 6) can be applied to re-
estimate b;(k). In a manner similar to the conventional
HMM, re-estimation formulations can be more readily
computed by defining a forward probability, «,(i), and a
backward probability, 8,(i) for any time ¢ and state i except
that Egq. (7.2.2}) or Eq. (7.2.3) is used for the output
probabilities. Further to the forward and backward
probabilities, the intermediate probabilities, x{i.j,k),
viia), Yoi), §AiLk), and (k) can be defined as follows for
efficient re-estimation of the model parameters:

Nnﬁmrm-_@w = %HmuHm‘ mh-_._.“.\-.__ Nu.?n)tc_k_N_ yv
GHQVQQF_;uﬂﬁn_i_cwwh:_Cq

= , (7.2.5)
fX|A)
l=fi=T-1
velig) = fls,=i, 5,1=j|X, A), 1=t=T-1 (71.2.6)
Y:() = fls,=i|X, A)
= 2DBE (7.2.7)
> arlk)
RE€Sp
$lih) = fls,=i,x,~v| X, A), 1=¢=T (7.2.8)
$ilk) = fmi~u)X, A), 1=¢=T. (1.2.9

Here, x,~v, means that x, is quantised to u,. All
these intermediate probabilities can be represented by x,()
since
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L
YGd) = X xdijk), 1=t<T—1 _ (7.2.10)
k=1 .

Y0 = M.s?:. 1=t=T-1 (7.2.11)

In Eq. (7.2.11), y7(i) must be computed from Eq. (7.2.7).
2 Xk g 1<t=<T

J
mibi(R)f(xiugBii) : (7.2.12)
FIXIA) ift=1

$eli k) =

k) = ]
£k M,,‘.?.z_ 1=¢<T (7.3.13)

IGmmnw Eq. (7.2.10) to (7.3.13), re-estimation egquations
for @;, a;, and b;(k), can be derived (detailed proof will be
presented in Section 7.5). In fact, the re-estimation formulas
have the same form as the continuous mixture HMM since:

T; = 1) (7.2.14)
T-1

M vli )

e=1 ]

T-1
Dy
=1

n_m.... —

(7.2.15)

bith) = Sh— (7.2.16)

The feedback from the HMM estimation results to the
VQ codebook implies that the VQ codebook is optimised
based on the HMM likelihood maximisation rather than
minimising the total distortion errors from the set of
training data. To re-estimate the parameters of the. VQ
codebook, ie. the mean vectors, u;, and covariance matrices,
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Z;, of the codeword v;, they can be written as:

T
MW“QF
W..m = nn.__-. , 1sj=L; (7217
MWNQV
t=}
T
25 B )
F.o= 2= , 1sj=sL. (72.18)

r
Mrs

As discussed in Chapter 5, Eq. (7.2.14) to (7.2.18) can
bhe extended to multiple independent cbservation sequences
by summing numerators and denominators respectively
corresponding to each observation sequence. Re-estimation
formulas for transition and output probabilities are, here,
formally, the same as for conventional ones. However, to re-
estimate parameters of the VQ codebook, observations for
different models will be used together aince different models
use the same VQ codebook. Thus, re-estimation of mean
vectors and covariance matrices of different models will
involve interdependencies. According to Eq. (7.2.17) and
(7.2.18), if any observation x; (no matter what medel it is
designated for) has a large value of a posteriori probability
{j), it will have a large contribution on re-estimation of
parameters of codeword v;. Different VQ density functions
to be re-estimated in such a manner will be strongly
correlated owing to large values of {(j). Let F denote the
set of models to be re-estimated. There are multiple
independent observation sequences for each model. In
general, re-estimation formulas for the V@ codebook can be
written as:
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T
DDAt T
= AE AL , 1=j=<L: (7.2.19)
PAPIPH L)
mEF g t=1
and

T
MHMM%&E?@%.f@;

w _ mEF g =]
T
PPN LT (7.2.20)

j =
meF n =1

l=j=<L.

where variables in [ ] are those designated for model m, and
multiple independent observation sequences for model m are
denoted by summation with respect to n. Here £ s
computed from observation sequence n of model m.

In Eq. (7.2.19) and (7.2.20), re-estimation formulas for
the mean vectors and covariance matrices of the vQ
codebook can be regarded as re-estimation fermulas for the
output densities of the continuous mixture HMM in which
all the output densities are tied up with different models
across the inventory of modelling units. Comparisen with
Eq. (4.2.11) and (4.2.12) shows that the EM algorithm for the
mixture density VQ codebook design is merely a special form
of these re-estimation formulas. Here, a unified modelling
approach to VQ and hidden Markov medelling of speech
signals is established. In the EM algorithm, the a posteriori
probability density is used as the weight in the re-estimation
formulas of the VQ codebook. In the unified modelling
approach, the weight is also the a posteriori probability
density, but the Markov properties associated with each
model are imposed. Therefore, optimisation of hidden
Markov modelling directly leads to optimisation of the the
VQ codebook. This is quite different from conventional VQ,
which minimises the overall average distortion without
~ consideration of subsequent modelling at all.
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If Eq. (7.2.3) is used as the semi-continuous output
probability densities, the re-estimation computational

complexity can also be significantly reduced. With such a
simplification, Eq. (7.2.5) can be written as:

Qhﬁvna&h;u\.ﬁhx lon)Be ()
FX[A) if vy €nix,)

7.2.21)
Xel g k) = (
0 otherwise

Similarly, Eq. (7.2.6) to (7.2.9) can be treated in the
same manner by using Eq. (7.2.10) to G.M.va..

7.2.3. Semi-continuous decoder

Whether the models are re-estimated based on the
discrete HMM or the semi-continuous HMM, the
forward —backward algorithm or the Viterbi algorithim can
be modified by replacing the discrete output probability
distribution with the semi-continuous output probability
density function. For example, the Viterbi algorithm can be
modified as follows:

Modified Viterbi algorithm

Step 1: Initialisation. For all states i,

BiD=m X [f(x)|upb,(op]
v €qlx;)
Step 2: Recursion. From time ¢=2 to T, for all states
7,
8.y =Max(8,_1(ayl 3} [f(x,]u)b;(w;)]
t v€nix,)
ﬁﬂcvnmnmwﬁ_mugulm:unc_u

Step 3: Termination. (* indicates the optimised
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results).

P’ =

mmwaimu
sr=argmax(8(s)]
sES,

Step 4: Path (state sequence) backtracking. From
time 771 to 1

» *
Se =W p1(si+1)

If the discrete HMM parameters are used by the semi-
continuous decoder, the continuous density function of the
vVQ codebook, fxlv;), is empirically required to be normal-
ised within [0,1] to retain consistency with the discrete
probabilities. The normalisation of f(x|v;} can be achieved
using

Fixluy « L= |
M\.Cn_et (7.2.22)
k=1

or

\.AH_EL..V - \.AH___.__;__“. _ .
2 fixlu) (7.2.28)
by €n(x)

Experiments show that both Eq. (7.2.22) and Eq. (7.2.23)
work well if discrete HMM parameters are used. However, if
the model is re-estimated based on the semi-continuous
HMM, such a normalisation is unnecessary since training
and decoding can be done in a consistent way.

7.3. Proof of the Unified Re-estimation

The proof in the main mathematical underpinning of
the unified modelling theory is to define the general Q-
function [11]. To re-estimate the parameters of the VQ

__w
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codebook, i.e. the mean vectors, p ;,» and covariance matrices,
Z;, of the codebook v;, all the training data for the different
HMMs should initially be collected as for conventional vQ.
As different HMMs for different speech units can be assumed
to be independent, the likelihood of being maximised in the
unified modelling approach should then be the summation of
each individual likelihood of the HMM:

2, Dllogf(X™"|]A™) (7.3.1)

mEF n

where X™" denotes the observation sequence n for model m;
and A™ denotes the parameters of the mth HMM. Let V
now denote the VQ codeword set and assume that all the
HMMs have the same structure. Following the concept of the
Kullback — Leibler statistics, the general @-function can be
defined as:

QAA) =

22X ESTIAY, g s, yimy 2P
meF xS V FEX™RA™)
where A and A denote {A™} and {A™} respectively. Following
the discussion in Chapters 5 and 6, it can be seen that
maximisation of the general @Q-function will lead to
maximisation of the likelihood function defined in Egq.
{7.3.1).

The Q-function defined in Eq. (7.3.2) can be well
separated into @7, @7, QF, and @, in a manner similar to
Eq. (6.3.6). @7, QF, and @ have the same form as Q. Qa,
and @, for the mth continuous mixture HMM as discussed in
Chapter 6. They can be maximised independently for each
m. However, for re-estimation of mean vectors and
covariance matrices, the @-function @, involves the
summation of different models. If the intermediate
probability density function, {"(}), is defined as:

$8°G) = fxMm~ | X™n 4™ (7.3.3)

@, can be written as:
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T
QAT = Manha.,_zs_ms.a.yav_ﬂxuw.a_@ (7.3.4)
meF n o t=1

Notice the similarity between Eq. (7.3.4) and the @-function
defined for the continuous mixture HMM (Eq. (6.3.9)). If the
VQ codeword density is assumed to be Gaussian, it is not
difficult to extend the re-estimation formulas of Eq. {(6.3.20)
and (6.3.21) to Eq. (7.2.19) and (7.2.20). In general, a broad
class of elliptically symmetric probability density functions
can also be accommodated in a similar manner to that
discussed in Chapter 6.

When the EM algorithm is applied to VQ, the discrete
HMM, and the continuous mixture HMM, the @-function has
played a key role in the development of the theories. The Q-
function defined above are a general form of those discussed
in Chapters 4 to 6. For example, if hidden state information
8 and Markov properities are excluded, Eq. (7.3.2) becomes
Eq. (4.2.3). Similarly, if hidden VQ codebock information V
is excluded, Eq. (7.3.2) becomes the @-function used in the
discrete HMM. Compared with the Q-function used in the
continuous mixture HMM, the difference is that Eq. (7.3.2)
introduces output probability density tying. With various
simplifications of the general Q-function, we can
conveniently return to other modelling techniques.

74. Summary

Compared with the discrete HMM, robustness of the
semi-continuous HMM can be enhanced by using multiple
codewords in deriving the semi-continuous output probability
in a similar manner to fuzzy VQ and multi-labelling VQ.
Unlike fuzzy VQ or multi-labelling, with the semi-
continuous HMM, the VQ codebook itself can be adjusted
together with the HMM parameters in order to obtain an
optimal combination. The unified modelling approach can
therefore achieve an optimal combination of HMM and VQ
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codebook parameters. Several variants of unified modelling,
such as feedback VQ [8] or supervised VQ [1), can be found
in the literature. If the Viterbi algorithm is used in training
instead of the forward—backward algorithm and the covar-
iance matrices are not re-estimated, supervised VQ [1] can
also be viewed as a special case of the semi-continuous
HMM.

The semi-continuous HMM incorporates the advantages
of both the discrete HMM and the continuous mixture HMM,
by which it is possible to model a mixture of a large number
of probability density functions with a limited amount of
training data and computational complexity. Robustness is
also enhanced by using multiple codewords in the semi-
continuous output probability. The semi-continuous HMM
can be considered as a special form of continuous mixture
HMM with tied mixture continuous density functions.
Because of the binding of the continuous density functions,
in the semi-continuous HMM, the number of free parameters
and the computational complexity are reduced compared
with the continuous mixture HMM while retaining the
modelling power of the continuous HMM with a mixture of a
large number of probability density functions. Heowever, it
should be pointed out here that the applicability of the
cortinuous mixture HMM or the semi-continuous HMM
relies on appropriately chosen acoustic parameters and the
assumption of the continuous probability density function.
Acoustic features must be well represented for the chosen
probability density function.

The Q-function has played an important role in the
unified modelling theory. Like a number of variants such as
time duration models, introducing hidden parameters in the
Q-function paves the way to solve the incomplete data
problem by unobservable complete data.
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CHAPTER EIGHT

USING HIDDEN MARKOV MODELS
FOR SPEECH RECOGNITION

In the previous chapters, the basic theory of hidden
Markov models has been introduced. A succesaful HMM-
based speech recognition system relies on the availability of
a large training database, powerful learning algoeritbms, and
detailed speech models. Access to a large database implies
that the given parameters of a apeech recognition system can
be well trained, which is essential for statistical modelling.
Powerful learning algorithms can extract available
information for the purposes of pattern classification based
on HMM assumptions. Finally, detailed speech models are
essential to model the various uncertainties present in
speech. Of course, these factors are interdependent. For
example, detailed models usually require more parameters,
which result in a requirement for more training data to
estimate these parameters reliably. .

In this chapter we will discuss practical issues and
various improved modelling techniques related to these.

8.1. Problems of Insufficient Data

The maximum likelihood estimates of the parameters
of a hidden Markov process have been shown to be consistent
(converge to the true values as the number of training
tokens tends to infinity) [12]. The practical implication of
this theorem is that, in training, as many observations as
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possible are required. However, in reality, only finite
training data are available. If the training data are limited,
this will result in some parameters being inadequately
trained and the value of these parameters will tend to be
very small. If these small parameter values characterise the
true nature of the speech signal, no problem exists.
However, if such small parameter values result from
problems with insufficient training data, then classification
based on poorly trained models will result in fatal errors.
One solution to the prablem of insufficient training data is to
increase the size of the training data. Often, this has its
limitations. A second solution is to reduce the number of
free parameters to be re-estimated. This also has its
limitations because a number of significant parameters are
always needed to model physical events. A third possible
solution is to interpolate one set of parameter estimates with
another set of parameter estimates for which an adequate
amount of training data exists, The following sections will
introduce two successful solutions to insufficient training
data problems, namely, parameter tying and deleted
interpolation.

8.1.1. Parameter tying

Parameter tying can reduce the number of free
parameters to be estimated thereby partially solving
problems arising due to insufficient training data. Note that
the concept of tying is directly accommodated in the semi-
continuous HMM, where the VQ codebook can be considered
as tying the continuous output densities of the continuous
mixture HMM. The fenone models [8] can also be viewed as
a kind of tying of output probabilities in word models, where
each fenone model represents one VQ codeword. Basically
the idea is to set up an equivalence relation between
parameters in different models [5]. In this manner the
number of free parameters can be reduced, and parameters
can be well estimated. This is particularly suitable to re-
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estimation of covariance matrices in the continuous mixture
HMM (29,50].

Let us take the discrete HMM as an example. Both the
transition and output probabilities with different states can
share the same transition or output probabilities. For
transitions, let r(i,j) be the set of transitions to which the
transition from state ¢ to j is tied; and (i) be the set of
states to which the output probabilities are tied. Then a;
and MAE can be re-estimated as follows:

T—-1
> S, )

PP e e=1 (8.1.1)

a; = T—1
PPIPNTCRT
FETU D =1 K
M M 1"
m...lﬁbv - JET() tEQ, =0,
(k) =

M_. w..._c.d

JEr(j) e=1

2 2 2w

S€r() tEQ, =y,

> W.Msc... )

Fexti) 1=1 i

(8.1.2)

The maximum likelihood property of the Baum —Welch
algorithm still holds with these tied probabilities, and this
can be proved by modifying the Q-function with the
introduction of an equivalence relation 7(iJ) or 7(j) in a
manner similar to the semi-continuous HMM for the vQ
density function. Note here that output probabilities
associated with the state (state-dependent HMM) can also be
considered as a tied model in which output probabilities are
associated with the transition (transition-dependent HMM).
This type of HMM has been used extensively [5,37]. In the
transition-dependent HMM, if output probabilities associated
with each transition to a specific state are tied together, it
will be the same as the state-dependent HMM. Eq. (8.1.2)
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can thus be regarded as a tied transition-dependent HMM,
where output probabilities associated with transitions to
state j are tied together.

8.1.2. Deleted interpolation

Since a major cause of inaccuracy in HMM is often the
extremely small probability values derived as a result of
insufficient training data, it is reasonable o impose some
constraints on the parameters. One solution is to set a lower
limit or floor to them. This can be done by setting those
parameters that are less than a certain value to be equal to
the floor value and re-normalising them in order to meet the
stochastic constraints. Such a smoothing technigue may not
be sufficiently sensitive to distinguish the unlikely output
symbols from the impossible ones, and this creates a problem
when the models are not well trained and many codewords
are not observed. An alternative technique is deleted
interpolation, which has been used with good results [33,37).

The basic idea of interpolation is to design two models;
one of which is the desired model for which estimates may
not be robust; the other is a smaller model for which the
amount of training data is adequate to give relatively robust
(but less accurate) estimates; the parameters from these two
models can then be interpolated. A smaller model may be
chosen by tying one or more sets of parameters from the
desired model, or simply from a uniform distribution. For
instance, if two output distribution estimates, b! and b7, are
derived from two different estimates, the first one may not
be well trained because of insufficient data problems; the
secodd one may have a reduced number of parameters which
are relatively well trained or may be a uniform distribution.
We would like to use the parameters of the second model to
smooth the first one. These two medels can be combined into-:

b = aHS_ + auv._.n_ t+rZ=1 (8.1.3)

where «! represents the weighting of the first model, and x?
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represents the weighting of the second model. A key issue is
the determination of the optimal value of x, which should be
a function of the amount of training data.

Recalling the mixture density problem and Example
4.2.1 discussed in Chapter 4, re-estimation of « has indeed
the same form as the mixture density estimation. Thus; it
can be done via the EM algorithm. In Eq. (8.1.3), the b; can
be regarded as density functions. As b} has been estimated
with the maximum likelihood criterion, if the same training
data are used to determine the weighting of the desired
model, «!, it will be 1, which is consistent with the same
criterion to estimate b;. Therefore, one solution is to divide
the training data into two disjoint parts. Then b} and b} can
be estimated from one part and «! from the other, while b}
and 5} are held fixed. Such a deleted interpolation has more
general implication, namely, it weights each distribution
according to its ability to predict unseen data. In most real
situations, it is hoped that the estimated model parameters
can be used to predict some as yet unseen observations so
that the purpose of recognition can be successfully solved.
Intuitively, when b} is well trained, it will predict unseen
data well, and «! will be generally large.

In general, the training data can be divided into K
blocks, and all the blocks except a deleted block can be used
to estimate x (model parameters (b;} are estimated from the
deleted block). The values x are estimated after all possible
deletions. According to the discussion in Chapter 4, the
maximum likelihood estimates for «! can be written as:

X mhuﬁ i
f-lw x Priy) (8.1.4)

£ = I.m.sﬂl_.H”_.._—nn.Mv..-;Vahv + ﬁHl_—n_.wwn.&A‘mv

where Pri(y,) is the probability of producing all the data in
block i using distribution 1, whick was trained from all K
blocks except block i, i.e. if data are used to estimate any
model i, they will be deleted in the computation in order to
predict unseen events better. The ahove formulation
assumes that the same « is used for distribution 1
everywhere; it is a form of tied estimate. In practice, it may
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be desirable to use a different x for each phone, or a different
x for each distribution. Furthermore, with the above re-
estimation formula, each iteration of deleted interpolation is
as  expensive as an  iteration of the normal
forward —backward algorithm. To reduce computation load,
separate counts (expected numbers before Baum - Welch re-
estimation) for each block during the final iteration of the
forward —backward procedure can be kept, and deleted
interpolation can be carried out on the counts heuristically
[37], with ¥ being re-estimated from one block based on «
Parameters estimated from the other block.

The idea of deleted interpolation can be generalised to
interpolate more than two distributions, which is the same
as the estimation problem of mixture densities. For
example, it is often necessary to interpolate a discrete output
probability distribution with a uniform distribution as in Eq.
(8.1.3). To improve the performance of a speaker-independent
speech recognition system, we can divide the training data
into male and female groups, and build male and female
models respectively. However, such a division may result in
insufficient training data for each group. Thus, one solution
is to smooth the desired model (i.e. male or female model)
with an averaging model (i.e. trained from both female and
male data) and uniform distribution

b = b} + k%F + k%), kltalixd=1 (8.1.5)

Weighting of each model «!, «2, and «° can then be
determined from deleted interpolation according to how well
trained each model is.

8.2. Estimation Criteria

The argument for maximum likelihood estimation is
based on an assumption that the true distribution of speech
13 a member of the family of distributions used in the
estimation. In HMM-based speech recognition, this amounts
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to the assertion that the observed speech is genuinely
produced by the HMM being used, and that only the values
of the model parameters are unknown. However, this can
well be challenged. Typical HMM: make many inaccurate
assumptions about the speech production process, such as the
output independence assumption, Markov assumption, and
the continuous probability density assumption. Such
inaccurate assumptions substantially weaken the rationale
for maximum-likelihood criteria. For instance, although
maximum-likelihood estimation is consistent (convergencs to
the true value), it is meaningless to have such a property if
the wrong model is used. The true parameters in such cases
will be the true parameters of the wrong models. Therefore,
an estimation criterion that can work well in spite of these
inaccurate assumptions should offer improved recognition
accuracy compared with the maximum likelihood criterion.
Other re-estimation criteria, such as maximum mutual
information criteria [14], minimum discrimination inform-
ation. criteria {22], H-criteria [27], and corrective training
(7,38], have been proposed to improve the maximum
likelihood criterion. In this section we will discuss two
distinctive methods: maximum mutual information
estimation and corrective training procedures, both of which
have been shown to work well in speech recognition.

8.2.1. Maximum mutual information criteria

The maximum mutual information estimation is based
on minimisation of the average uncertainty of the word
sequence to be recognised, given the acoustic observations,
instead of finding true model parameters [14]. Therefore, the
invalid argument for maximum likelihood estimation can be,
to an extent, corrected. Suppose the language model is given,
a possible solution is then to maximise the average mutual
information between the acoustic observation sequence and
the complete set of models (A;A,, . . . »Ay), and the criterion
can be written as
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10,4) = logPr(0°|A,) — log SPr(0*|A,)Pr(A)] 8.2.1)

i.e. choose A so as to separate the correct model A, from all
other models on the training sequence Q. By swmming over
all training observations, one would hope to attain the most
separated set of models possible. To maximise the above
equation, traditional maximisation techniques, such as the
gradient descent methods, can be used [6,26]. Alternatively,
the Baum — Welch algorithm can be generalised to rational
objective functions [28], and applied to maximum mutual
information criteria.

The forward —backward algorithm described in Chapter
5 can be used in the same way as for the maximum
likelihood criterion, but re-estimation formulas must be
obtained from the gradient search or generalised

Baum—Welch algorithm [28). If the iobjective function, is
maximised with a gradient-based hill-climbing algorithm,
the derivative of 7(Q,A) with respect to model parameters A,
namely, (A,B,x), must be computed. As probability Pr(O|A)
can be represented by the forward variables and backward
variables, the derivatives can also be expressed by y/{i,j) in
a similar manner to those discussed in Chapter 5 [14]. Here,
the forward—backward computation must be performed for
all the speech samples with every medel. Since the
forward —backward computation is only needed for the
speech sample corresponding to model v in maximum
Likelihood methods, if the total number of models is large,
the hill-climbing step will involve much more computation
than maximum likelihood methods. One way to reduce
computational complexity is to replace the second term HMV

in Eq. (8.2.1) by the summation for only a set of acoustically
confusable models.

When parameters are’ iteratively re-estimated,
stochastic constraints must be satisfied in each iteration,
However, this is not the case when the gradient descent
algorithm is applied directly [14]. In addition, the gradient
itself may not be bounded [44]. Implementational issues to

)
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solve these problems can be found in [14,44].

8.2.2. Corrective training

The heuristic corrective re-estimation procedure
[3,7,38] attempts to maximise recognition accuracy on the
training data. This algorithm tests the decoder using re-
estimated models according to training data in the training
procedure, and subsequently improves the correct models and
suppresses misrecognised or near-miss models. The basic
training procedure is simple, and can be described as follows:

Corrective training

Step 1: Using training data and the forward —backward
algorithm iteratively obtain v,(} probabilities and expected
frequencies used in the re-estimation of HMM parameters.

Step 2: Perform apeech recognition on the training data
based on currently estimated parametera.

Step 3 ¥ any word is misrecognised, or near-
misrecognised, adjust the estimated model parameters to
reduce the probability of misrecognised or unear-
misrecognised words, Update the model parameters.

Step 4: If any adjustments are made in Step 3, return to
Step 2.

Although such a procedure cannot guarantee
convergence, it has many merits. Firstly, the model
assumption may not be required to be as accurate as for the:
maximum likelihood criteria. For any set of models,
corrective training attempts to find statistics that make the
models work rather than maximiging the Iikelihood,
Corrective training acts to minimise the recognition error
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rate, even if it reduces the likelihood or the mutual
information of the training data. Secondly, if the
conventional EM algorithm leads to statistics that are
stranded on a local maximum, corrective training may offer
the potential to hoist them off, allowing continued
optimisation (7). In practice, it is reported that corrective
training yields better recognition accuracy than either
maximum likelihood criteria or maximum mutual
information criteria [7].

In a similar way to corrective training, discriminant
analysis can be used in continuous hidden Markov modelling
in which the between-class covariance matrices can be
obtained from the misrecognised data [21). The between-
class and within-class covariance matrices are used to project
each continuous output probability density function in the
continuous HMM, and such a projection is reported to reduce
recognition error rate significantly in comparison with the
continuous HMM [21].

8.3. Multiple Features

It is helpful to use multiple features in a practical
speech recognition system. For example, LPC cepstral
coefficients can be used together with energy and other
dynamic information [14,24,37,50,53,61).

One way to incorporate different features into a speech
recognition system is to model these multiple features as one
vector. Continuous or semi-continuous hidden Markov
modelling will be appropriate to such a representation as
either diagonal covariance or full covariance can be well
used to accommodate different feature representations
(14,52,53]. Since different features may have different
physical meanings, or even be strongly correlated, it is often
Decessary to use appropriate probability density functions.
In addition, dimension reduction ‘approaches based on
principal component or discriminant analysis projection are
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required [14,31]. Alternatively, if the semi-continuous HMM
or the discrete HMM is used, each feature representation can
be quantised by its own VQ codebook (29,30,37].

When multiple codebooks are used, each codebook
represents a set of different speech parameters. One way to
combine these multiple output observations is to assume
that they are independent, with the output probability
computed as the product of the output probability of each
codebook. It has been shown that performance using multiple
codebooks can be substantially improved [39]). In the semi-
continuous HMM, the semi-continuous output probability of
multiple codebooks can also be computed as the product of
the semi-contiruous output probability for each codebook as
in Eq. (7.2.2), which consists of L-mixture continuous density
functions. In other words, the semi-continuous output
probability could be modified as:

L
bix = [ Brealonsiwn (8.3.1)
e j=l

where ¢ denotes the codebook used. The re-estimation
algorithm for the multiple codebook based HMM could be
extended if Eq. (7.2.5) is computed for each codeword of each
codebook ¢ with the rest of the codebook probabilities. Since
multiplication of the semi-continuous output probability
density of each codebook leads to several independent items
in the @-function as shown irn Chapter 7, for codebook cr,

x:(i,j &) could be extended as:
xeli g k™) = (8.3.2)

. L
ﬂ%«.vﬂﬂ&.._mm} v\.n;N_I.H_ c»nhu:_” M \.nANu+—_c“..=v&.mAcMuuumn+ HCV

erey m=1

FX|A)

Other intermediate probabilities can also be computed
in a manner similar to Eq. (8.3.1), and it can be easily
proved that this is consistent with the maximum likelihood
criterion.
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8.4. Time Duration Modeling

One of the major weakness of conventional HMMs is
related to the modelling of state duration. The HMM does
not provide an adequate representation of the temporal
structure of speech where the probability of state occupancy
decreases exponentially with time. The probability of ¢
consecutive observations in state { can be written as

nm_.ﬁnv = n_,__nu.ﬁw|ﬂ..mw . (8.4.1)

i.e. di(t) is the probability of taking the self-loop at state ¢
for ¢ times. An improvement to the standard HMM results
from the use of HMMs with time duration (40,56], which
model, not only the output and transition probabilities, but
also a set of state duration probabilities explicitly.

To explain the principle of time duration modelling, a
conventional HMM with exponential state duration density
and a time duration HMM with specified state duration
densities (which can be either a discrete distribution or a
continuous density) are illustrated in Figure 8.4.1. In (a},
the state duration probability has an exponential form as in

H 2 3
{a)
1 2 3
a _ HO—Q O—O)
rf/r/|r||l|.|11\\| - r//.rzlll||||11.q...\ valfff.‘|.l11\.\\ :
th)

Figure 8.4.1 A time duration HMM
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Eq. (8.4.1). In (b), the selftransition probabilities are
replaced with an explicit duration probability distribution.
At time ¢, the process enters state i for duration + with
probability density d(r) during which the observations
0:+1,01+3, . . . ,0,4, are generated. It then transfers to state
J with transition probability a;; only after the appropriate 7
observations have occurred in state i. Thus, by setting the
time duration probability density to be the exponential
density of Eq. (8.4.1) the time duration HMM can be made
equivalent to the standard HMM.

The parameters d(r} can be estimated from
observations m_wuw with the other parameters of the HMM.
For muwm&munm\nrm duration density is usually truncated at a
maximum duration value D. To re-estimate the parameters
of the HMM with time duration modelling, the forward
recursion must be modified as follows:

._-
ssuMw s%s.a.._ﬁﬁsa_-.a a.p_s
T i =
i=j
where the transition from state i to state J depends not only
upon the tramsition probability a; but also vpon all the
possible time durations + that may occur in state ;.
Intuitively, Eq. (8.4.2) illustrates that when state ; is
reached from previous states i, the observations may stay in
state j for a period of r with duration density d;{r), and each
observation emits its own output probability. All possible
durations must be considered, which leads to summation
with respect to r. The independence assumption of observ-
ations results in the : term of the output probabilities.

Similarly, the backward recursion can be written as:

Bl = MM na&%iﬁo&b?thi%@ 8.4.3)
=1

L n_._.t,...
=
The meodified Baum — Welch algorithm can then be used
based on Eq. (8.4.2) and (8.4.3). The proof of the re-
estimation algorithm can be based on the modified Q-
function as in Eq. (5.4.1) except that Pr(0,S|\) should be
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replaced with Pr(0,8,T|)), which denotes the joint prob-
ability of observation, O, state sequence, S =48 14008k SN} ID
terms of state s, with time duration r,, and the
corresponding duration sequence, T'={ry,...,74,....7x}.

f— H -
AA) = —— .
QAN = 5= o7 M.M?S.m,jéﬁ?a_m.a_z (8.4.4)
In a manner similar to the standard HMM, Ye.r(§,j) can
be defined as the transition probability from state ; at time ¢

to state j with time duration r in state j. ¥e.(i.J) can be
written as:

Yeolin) = alDagdi(n ] [6,00,208.4.4) (8.4.5)
i=1

Similarly, the probability of being in state i at time ¢ with
duration 7 can be computed as:

Yeoli) = Dvealini) (8.4.6).
J

In a manner similar to Eq. (5.4.4) and after some
algebraic operations, the re-estimation algorithm can be
written as follows

T-1

2 D)

=1 r

a; = (8.4.7)

T-1
PIDIP IR

=1 r
T
M*n.dcv
nm..%._-v . t=1

-7
MM.?..«QV

t=1 r

(8.4.8)
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T
) 2 D vealides (k)
bik) = L2 T (8.4.9)

7 T
M M Yo UM
=1 r

where ¢, (k) denotes the number of codewords v, occurring
during state occupancy t for Oy, ... ,0;,,.

The Viterbi decoding algorithm can be used for the

time duration model, and the optimal path can be
determined according to:

8:(/)=Max Max[§, _ (Daydi(n ] [0, ., (8.4.10)
i T k=1

The importance of incorporating time duration
modelling is reflected in the observation that, for some
speaker-dependent speech recognition systems, the recog-
nition accuracy can be significantly improved when time
duration modelling is used. However, there are drawbacks to
the use of the time duration modelling discussed here. One is
the greatly increased computational complexity to the order
of O(D%, where D is the truncated time duration length.
Another problem is the large number of additional
parameters (D)), associated with each state, that must be
estimated. Usually, there are much fewer training data to
estimate d;(r) than would be used in 2 standard HMM. This
limited training data may cause the time duration HMM to
show poorer recognition accuracy than & standard HMM [57].
One proposal to alleviate some of these problems is to use a
continuous density function instead of the discrete
distribution d;(r) [40,56]. A more interesting alternative is
to smooth the discrete time duration distribution by the
Gaussian probability density function [4,37], which can
significantly improve the performance when limited training
data are used.
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8.5. Representation of Speech Units

. In hidden Markov modelling, one of the most important
18sues i8 how to represent speech units. In fact, it is possible
to use HMMs to represent any unit of speech. Even if speech
units are poorly selected, the HMM has an ability to absorb
the suboptimal characteristics within the mode! parameters.
A central philosophy in hidden Markov modelling is that
knowledge sources (such as phonetic or syntactic knowledge
sources) that can be represented as anm HMM should be
represented as an HMM. This is because such an HMM
representation can be automatically trained from training
wnﬁm. and improved recognition aceuracy will normally result
if training and decoding are treated under the same
framework.

For example, if subword models with a grammar are
12&_ the word and sentence knowledge can be incorporated
into the recognition systems by representing each word as a
network of subword models which encedes every way in
which the word could be pronounced. The grammar can be
represented as a network whose transitions are words, and
the network can encode all legal sentences. If the subword
model is represented as an HMM, a large HMM that encodes
all the legal sentences can thus be obtained.

In the above described system, the modelling unit can
be phrases, words, syllables, phonemes, and other subword
units. The choice of speech units largely relies on the specific
task to be carried out by the speech recognition system. For
example, if the task is digit recognition, whole-word models
will be a natural choice. On the other hand, if the task is
large vocabulary speech recognition, subword unit models
will have distinctive advantages.

8.5.1. Whole-word maodels

_Hrw most natural unit of speech is the word, and it has
been widely used for many speech recognition systems
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[21,29,41,48,53]). One of the most distinctive advantages of
using whole-word models is that these are able to capture
within-word phoneme coarticulation effects. When using the
whole-word models, many phonological variations can be
automatically accommodated and, when whole-word models
are adequately trained, they will usually yield the best
recognition performance. Therefore, for small vocabulary
recognition, whole-word models are widely used.

While words are suitable units for recognition, they are
not a practical choice for large vocabulary recognition. Since
each word has to be treated individually and data cannot be
shared between word models, this implies a prohibitively
large amount of training data and storage. In addition, for
some task configurations, the recognition vocabulary may
consist of words which have not appeared in the training
procedure. As a result, some form of word model composition
techrique is required to generate word models, which do not
appear during training.

8.5.2. Subword models

Instead of using whole-word models, various subword
models can be used 3o thai data can be shared across words.
Such an approach relies on the assumption that a word
model can be constructed based on existing linguistic
knowledge. Each word can be represented as a lexical item
by a concatenation of subword models. Typical subword
models include
(1) linguistically defined subword units, such as phone

models, diphone models [34,58)], word-dependent phone

models {16,37,45], and triphone models [2,17];

(2) acoustically defined subword models, such as fenone
models [8) and segment models [35};, and

{3) hybrid models such as generalised triphone models
[32,37], and allophonic models [1].
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Subword modelling can be considered as partitioning of
the parameter space into smaller sets that can be adequately
trained. Linguistically defined subword models use human
specific knowledge for partitioning; acoustically defined
subword models use automatic algorithms to explore the
acoustic similarities; and hybrid models are a combination
using both linguistic and acoustic krowledge.

Phones are the most well-understood subword unit.
Since there are only about 50 phones in English, HMMs
based on phone models can be adequately trained. These
models are also task-independent, and can be trained on one
task and tested on another, although performance may
possibly deteriorate. As the realisation of a phone is context-
semsitive, the phone models are generally inadequate to
model coarticulation effects in a given word. This causes the
phone-based HMMs to yield lower recognition accuracy than
the whole-word-based HMMs {8,36,51].

To model coarticulation effects, the basic requirement is
to model phones according to their context as in the case of
triphone models. Here, context refers to the immediate left
and/or right reighbouring phones. Triphene models take into
consideration the left and the right neighbouring phones; if
two phones have the same identity but different left or right
context, they are considered different triphones. In triphone
modelling, both within-word and between-word coarticul-
ation can be taken into account [32]. While triphone models
are good for modelling coarticulation effects, there are a very
large number of them, which can only be sparsely trained.

Some phones have the same effect on neighbouring
phones, but triphone modelling assumes that every triphone
context is different. For example, /b/ and /p/ are both labial
stops, and have similar effects on the following vowel. If
these similar contexts can be identified and merged, the
number of models can be reduced, leading to fewer free
parameters and models. One approach is to merge
perceptually similar contexts using human knowledge
{19,20). A more interesting approach is to identify and
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merge triphones automatically in similar acoustic
realisations, with clustering procedures being used to
produce generalised triphone models from triphone models
[37]. The distance measure between two models, A, and Ag,
of the same phone in similar context is based on the
following distance measure:

DA A =
N, ) e W
IIerapp ™ A Ieraing ™) (8.5.1)

Ny o)
[I®rGin,.e )

where Pr(i]A;) and N 2, (1) are the discrete output probability
of codeword i and the corresponding count of codeword i in
A, respectively. This equation measures the ratio between
the probability that the individual distributions ?o.?._am
merging) generated the training data and the probability
that the combined distribution generated the training data.
This is consistent with the maximum-likelihood criterion
used in hidden Markov mode! parameter re-estimation.

The same clustering procedure can also be applied to
allophone models, where various sources of variability, such
as articulation variabilities, linguistic variabilities, or
speaker variabilities, of phone models can be taken into
consideration in the allophone models [38). The bottom-up
subword clustering process finds a good mapping for each of
the allophones to generalised allophones. Alternative
procedures based on the use of decision trees have also been
proposed to generate allophonic models [1].

8.6. Isolated vs Continuous Speech Recognition

For isolated word recognition, the training mn.n_
recognition can be implemented directly using the basic
algorithms introduced in Chapter 5. To estimate model
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parameters, examples of each word in the vocabulary can be
collected. The model parameters can be estimated from all
these examples using the forward-backward algorithm and
the Baum — Welch algorithm. It is not necessary to clip the
speech from the silence at the beginning and ending because
these will be absorbed in the states of the word models. If
subword units, such as phone models, are used, these
subword units can be first concatenated into a word model,
possibly adding silence models at the beginning and end.
These concatenated word models can then be treated in the
same manner as word models. For recognition, either the
forward algorithm or the Viterbi algorithm can be used to
score the input word against each of the word models. If no
language model is used, the word model with the highest
probability can be chosen as the recognised word, If a
language model is used, the decoder based on a maximum
@ posteriori probability can be used.

Training HMMs on continuoys speech is very similar to
training on isolated words. One of the great advantages for
hidden Markov modelling is that it can absorb a range of
boundary information of models automatically for continuous
speech recognition. Other techniques such as DTW, or neural
networks face serious problems in training models for
continuous speech, because word boundaries are not
automatically detectable. Tedious hand-marking is often
needed.

To train the parameters of the HMM, each word can be
mnmnmsﬁngm._imnr its model (which may be a concatenation of
subword ‘models). The words in the sentence can be
concatenated with optional silence models between them.
This large concatenated sentence HMM can then be trained
using the corresponding sentence. Since the entire sentence
HMM is trained on the entire observatien sequence for the
corresponding sentence, all possible word boundaries are
inherently considered. Parameters of each model will be
based on those good state-to-speech alignments. This is
because the state sequence is hidden in HMMs, and it does
not matter where the word boundaries are, since these will
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be automatically determined by the re-estimation algorithm.
Such a training method allows complete freedom to align the
sentence model against the observation, and no effort is
needed to find word boundaries.

In continuous speech recognition, a word may begin
and end anywhere in a given observation signal. As the word
boundaries -cannot be detected accurately, all possible
beginning and end points have to be accounted for. This
converts a linear search (as for isolated word recognition) to
a tree search, and a polynemial recognition algorithm to an
exponential one. As an optimal full search is infeasible for
large-vocabulary continuous speech recognition, .mwa.m_.m_
suboptimal  search  algorithms are used instead
{5,42,46,53,63].

The Viterbi search [63] car be extended to continuous
speech recognition by enumerating all the states of all the
words in the grammar and using the Viterbi algorithm
inside the words with between-word transitions specified by
the grammar. This is efficient for moderate vocabulary
recognition systems [10]. However, for large-vocabulary
speech recognition, it is still very time nommcﬁmum. Ingtead of
retaining all candidates at every time frame, a thresheld can
be used to consider only a group of likely candidates. The
state with the highest probability can be found first, and
each state with smaller probability than the highest one can
then be discarded from further consideration. This is the
beam search algorithm, which alleviates the necessity of
enumerating all the states, and can lead to substantial
savings in computation with little loss of accuracy.

Despite the efficiency of the Viterbi algorithm, it is a
suboptimal search since it finds only the optimal state
sequence instead of the optimal word sequence, mb.a the
probability obtained from the Viterbi algorithm is an
approximation of Pr(O|A). In view of this problem, improved
search algorithms, such as the stack decoding algorithm E..w“_.
can be wused, with however considerable increase in
computational complexity.
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As pointed out in Chapter 3, a decoder must evaluate
Pr(W)Pr(O|W) for all the possible word sequences, W, given
the observation 0. Ap optimal decoder should choose a word
sequence W that maximises Pr(W)Pr(O|W). The search
Process can be represented by a tree where branches
correspond to words, and nodes correspond to sentences as
shown in Figure 8.6.1. Hence, non-terminal nodes corres-
pond to incomplete sentences, and terminal nodes to
complete sentences. Techniques, such ag depth-first or
breadth-first searching, can be useed to obtain gn optimal
word sequence. In depth-first searching, nodes are first
expanded based on most recently generated nodes; and in
breadth-first searching, nodes are first expanded in the order
in which they are generated. However, these blind-search
methods do not take into aceount how close we are getting to
the goal, and are usually computationally infeasible in
practical speech recognition systems. Therefore, heuristic
search methods, which are based on some evaluation
functions, can be applied here. Heuristic search theory has

boo

Figure 8.6.1. Search tree
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been well studied in Artificial Intelligence [11,47]. One of
the key problems in heuristic search is the definition of an
evaluation function. The evaluation function of a node may
include the cost up to the node and estimate of cost to the
target node from the node. For example, stack decoding [5]
is a variant of the heuristic A* search based on the forward
algorithm, where the evaluation' function is based on the
forward probability. In contrast to the Viterbi search, it is
not time-synchronous, but extends paths of different lengths,
The search begins by adding all possible one-word
hypotheses to the OPEN list. Then the best hypothesis is
removed from the OPEN list, and all paths from it are
extended, evaluated, and placed back in the OPEN list. This
search continues until a complete path that is guaranteed to
be better than all paths in the OPEN list has been found. In
general, the evaluation function that estimates the score of
the complete path as the sum of the known score of the
partial path and the expected score of the remaining path is
needed to select the best path. If the expected score of the
remaining path is always an underestimate of the actual
score, then the solution found will be optimal. In practice,
an underestimating evaluation function is difficult to find for
speech recognition. The ones that are guaranteed to
underestimate will result in a very large OPEN list. So, a
heuristic function that may over-estimate has to be used to
prune more hypotheses. The best-first search is usually
carried out. In addition, two types of pruning can be used:

(1) a fast-match that reduces candidates for detailed
decoding [9], and

(2) the use of a stack that saves only a fixed number of
hypotheses mu. the OPEN list [5],

In summary, Viterbi search is a graph search, and
paths cannot be summed because they may have different
word histories. Stack decoding is a tree search, so each node
bas a unique history, and the forward algorithm can be used
within word hypotheses when the word is extended. With
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stack decoding, it is possible to use an objective function that
searches for the optimal word string, rather than the optimal
state sequence. However, unlike Viterbi search where
acoustic probabilities being compared are always based on
the same partial input, partial paths of different lengths are
allowed in stack decoding. Normalisation must be used in
order to compare these probabilities.

8.7. Speaker Adaptation

In speaker-dependent speech recognition, every speaker
is required to dictate a specific script in order to train the
recognition system. As there are anatomical differences (the
length of the vocal tract and the size of nasal cavity) and
speaking habit differences (accent, speed, and loudness)
among different speakers, performance of such systems
degrades significantly when the speech being recognised is
not well characterised by the speech sample being used in
training. Te avoid fully re-training the recognition system
for the new user, it is hecessary to employ a set of speech
data of new speakers to adapt speech recognition systems
trained from other speakers. In contrast, in speaker-
independent speech recognition, the use of speech from many
speakers enables reliable and robust estimation of a large
number of parameters to model speaker-independence.
Different speakers can use the system without re-training
the system. However, owing to inherent differences of
speakers, it is still desirable to enhance the robustness of
speaker-independent systems by considering different
speaker characteristics through speaker adaptation.

Most speaker adaptation algorithms require a few
adaptation sentences from the new speaker, and adapt model
parameters from these adaptation speech data, thereby
alleviating tedious re-training procedure with a full set of
training data. Techniques, such as transformation of original
speech data of a new speaker according to that of a reference
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speaker (15,18,54], and combination of « priori knowledge
with the speaker-specific knowledge obtained from
adaptation data using Bayesian learning [13,55,62], have
been proposed. Various techniques to modify the VQ
codebook [25,49,60] and HMM parameters of a reference
speaker according to adaptation data [23,43,49,59}, have
also been widely investigated.

In various adaptation techniques, unified modelling to
VQ and HMM based on the semi-continuous HMM presents
a novel method for speaker adaptation. The VQ codebook
characterises the most significant speaker differences, but
the number of free parameters is modest. Modification of the
VQ codebook according to the HMM parameters that are
ultimately used for speech recognition offers a unique way to
modify the VQ codebock. The semi-continuous re-estimation
formulas, Eq. (7.2.19) and Eq. (7.2.20), can be well used for
such an application. Using the unified maodelling theory, the
VQ codebook can be re-estimated by the adaptation data
while the HMM parameters are fized. It is reported [55]
that speaker adaptation based on the unified modelling
theory yields excellent adaptation results. It is substantially
better than either Bayesian learning of the VQ codebook or
VQ mapping techniques [60].

8.8. Summary

In this chapter we have discussed several practical
issues in using HMMs for speech recognition. Modelling
units play an important role in speech recognition, and have
been an active research area. Detailed modelling, such as
time duration modelling, requires substantial training data.
Tying and interpolation are two important techniques in
solving this problem. Estimation criteria become much more
important if there exist too many inadequate assumptions.
Speaker adaptation helps practical applications of speech
recognition. The use of these techniques can be found in
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many practical speech recognition systems.

10.
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CHAFPTER NINE

EXPERIMENTAL EXAMPLES

In this chapter we will discuss implementational issues
and experimental results based on the theories introduced 80
far. In particular, SPHINX, a state-of-the.art large-
vocabulary speaker-independent  continuous speech
recognition systém developed at Carnegie Mellon University
[7], will be used here as a typical example to illustrate
principles in hidden Markov modelling of speech signals.

9.1. Implementational Issues

This section will briefly introduce several implemen-
tation issues, such as initial estimates, model structures,
scaling, logarithmic representation, and thresholding. Some
of these, like thresholding or logarithmic representation, are
not necessarily required.

9.1.1. Imitial estimates

In theory, the re-estimation algorithm of the HMM
should give a local maximum of the likelihood function. A
key question is how to choose initial estimates of the HMM
parameters so that the local maximum is the global
maximum. In particular, if a probability is initialised to be
zero, it will remain zero with every iteration. Experience has
shown that, for the discrete HMM, uaniform initial estimates
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work well, though good initial estimates may be helpful to
output probabilities; for the continuous or semi-continuous
HMM, however, good initial estimates are essential. Such
initial estimates can be obtained by using hand-marked
data, by using a segmental k-means clustering [11], and by
using discrete HMM parameters [5].

9.1.2. HMM structures

The choice of model topology depends on available
training data and what the medel is used to represent. If
each HMM is used to represent a phone or a triphone, one
possible topology is shown in Figure 9.1.1. There are seven
states and twelve transitions with transition-dependent
output probabilities. Three groups of transition-dependent
output probabilities and transition probabilities are tied and
represented as B, M, and E in the figure. The model
assumes that there are at least three steady states for a

Figure 9.1.1. HMM used in SPHINX
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phone, which are indicated by the self-loops. This topology
has the advantage of better modelling time duration as there
is only one legal Path for input of length 1 to 4. It has been
successfully used in SPHINX (7.

Another possible representation of such & model can be
shown in Figure 9.1.2. There are five states and twelve
transitions with state-dependent output probabilities. This is
the so-called left-to-right model and has been widely used in
many speech recognition systems {2,5,12]. If such a model is
used fo represent a word, more states are generally required.

No matter what kind of structure is used, the
parameters of the model must satisfy stochastic constraints.
In the discrete HMM, for example, the following equations
must be satisfied. :

Ma-. = H.
i
an =1,
J

and

Figure 9.1.2. A left-to-right HMM
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L
Abik) =1
k=1

8.1.3. Scaling

In hidden Markov modelling, when the observation
sequence length, T', becomes large, both the forward and the
backward variables, a,() and B8,0, will approach zero in
exponential fashion. For sufficiently large T, the dynamic
range of the & and B computations will exceed the precision
range of essentially any machine. Thus in practice, the
number of observations necessary to train adequately a
model and/or compute its probability will result in underflow
on the computer if probabilities are represented directly.

The scaling principle is to multiply a,(i) and B:@) by
some scaling coefficient so that it remains within the
dynamic range of the computer for 1=<¢=<7. All of these
scaling coefficients should be removed at the end of the
computation in order to guarantee the accuracy of the
Baum — Welch algorithm.

Let a,(i} be calculated according to Eq. (5.3.6) and then
be multiplied by a scaling coefficient, c;

e, = [ Qa,)] ! 9.1.1)
i
so that annﬁcvuuw for 1=¢=<T. B,(i) can also be

4
multiplied by ¢, for 1<¢{<7T and 1<{<N. The recursion
involved in computing the forward and backward variables
can be scaled at each stage of time ¢ by ¢,. Notice that a and
B are computed recursively in exponential fashion; therefore,
at time t, the total scaled factor applied to the forward
variable a,() is

4
¢ = [« 9.1.2)
i=1



242 y CHAPTER 9

and the total scaled factor applied to the backward variable
B.() is

T
D, = []e 9.1.3)

i=t
This is because the individual scaling factors are multiplied

together in the forward and backward recursion. Let a:.o_

P_Q_ and .5_0 denote scaled a,(), 8,0, and Y:0) respectively.
Note that

2 ap(i) = Cp 3 ag(i)

i€Sp i€8p
= Qﬂmﬂﬁo_?v

The scaled intermediate - probability, ﬁ‘:.tc can then be
written as:

(9.14)

C, nnaaaﬁ.ahiumi 1D 4y

Cr D ap(i)
T

Yelisj) =

(9.1.5)
= Yeliy)

Thus, the intermediate probabilities can be used in the same
way as un-scaled probabilities because the scaling factor Cp
is cancelled out in Eq. (9.1.5). Therefore, re-estimation
formulas can be kept exactly the same as discussed in
Chapter 5 except that ﬁﬁmo_a should be computed

according to .
> apli)

Pr(o|N) = = ®.1.6)
Cr

In practice, the scaling operation need not be performed
at every observation time. It can be used at any scaling
interval for which the underflow is likely to occur. In the
un-scaled interval, ¢, can be kept as unity. In explicit time
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duration modelling, the scaling operation must be involved
for each output probability computation in a manner similar
to those described here.

8.1.4. Logarithmic computation

An alternative way to avoid underflow is fo use a
logarithmic representation for all the probabilities. This not
only ensures that scaling is unnecessary as underflow cannot
happen, but also offers the benefit that integers can be used
to represent the logarithmic values, thereby changing
floating point operations to fixed point ones.

If we represent probability P by log,P, more precision
can be obtained by setting b closer to unity. To multiply
two numbers, we simply add their logarithms. Adding two
numbers is more complicated. Let us assume that we want
to add P, and P, and that P, =P,:

_ON@QU“_.-_-vaV
= log, (55"t ¢ ploesPy (9.1.6)
= log,P; + Homo:+&_am%u - _n_u%_v

Since integers are used to represent logarithms, if
~cmwﬁ+®_an@wm|_§%_v is less than 0.5, the sum will simply
be log;P;. In other words, if P, is so many orders of
magnitude smaller than P;, adding the two numbers will
just result in P,. Moreover, if we could store all possible
values of log,Py—log,P;, logy(1+5"8 2~ 6P1) (0014 be
stored as a table, T'(r), where . .

logy(1+5%) if T(n)=05

_— 9.1.D
T(n) = 0 otherwise

The number of possible values depends on the value of b. In
practice, the size of T'(n) can be determined by decreasing n
from 0 until log,(1+5") approaches zero. Varying b from
1.0001 to 1.00001, the size of T'(n) increases from 99041 to
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1220614 when 32-bit integers are used for logarithma (3,7].
With the aid of this table, |

logy(P,+P,) (9.18)

logy Py + T(log, Py — logyPy) ifP>P,
"|logsP3+ T(log, P, — log,P3)  otherwise

This implements the addition of two probabilities as
one integer addition, one subtraction, two comparisons, and
one table look-up. Although using logarithms undoubtedly
introduces errors, in practice, the errors can be of the same
order s when the scaling procedure is used for float
representation.

9.1.5. Thresholding

The amount of computation in the forward —backward
computation can be reduced by thresholding the forward and
backward variables. Recalling that in the Baum — Welch re-
estimation formulas, if certain Y become very small relative
to other v, it is observed that these small Y have little effect
on the final re-estimates. Since the forward variable a, (i)
appears as a factor in v, if during the course of the forward
computation certain & become very small relative to other a
at time ¢, these small a can be assumed to be zero without
significantly affecting the performance.

Let &, denote the maximum a,(i) at time ¢ with
respect to different state i,

&, = gwun a,(i) (9.1.9)

Then, given a threshold ¢, for each state { such that
a,(i)<cd, set a,(i) equal to zero before moving on to
compute « at time ¢+ 1. Thus, at time t+1, only those «
from time ¢ which are greater than zero will be included.
The backward pass can be thresholded in the same manner.
In addition, if a,(i) is zero, B.(i) can be set to zero too. In
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large-vocabulary  speech  recognition systems,  this
thresholding is very important in reducing the computation
to a manageable size.

The appropriate value of the threshold ¢ must be
determined empirically. If ¢ is too large, more computation
than necessary will be performed. If ¢ is too small, the
forward —backward algorithm will deteriorate to Viterbi
training, i.e. only the best path will be used for estimation of
model parameters, which will usually deteriorate final
Tecognition accuracy.

9.1.6. Examples of C programs

This section will demonstrate how the theories
introduced so far can be implemented on computers. C
programming language will be wused to explain
implementational details for several selected examples. It is
intended to help readers in writing computer programs. The
C program routines presented here are unnecessary optimal
solutions.

The mathematical model has been described previously.
To convert such models into computer programs, the data
structure must be defined first. For example, each state and
transition arch can be defined as

struct state
f
short num_out, num_in, initial, final;
float output[VQ_LEVEL;];
int trana_out[MAX NUM_TRANS_QUT),

trans infMAX NUM_TRANS_TOQ_STATE];
|5

struct transition

{
int destination, erigin;
float trans_praob;

|5
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struct HMM
{

int num_states, num _arcs, num_initial,
num_final, num_omatrix;

struct state *states;

struct  transition *transitions;

5

Therefore, each HMM consists of states (HMM. states),
transitions (HMM.transitions), number  of  state
ﬁmgzbcalmnmammv. number of arcs (HMM.num_arcs),
number of initial states (HMM.num_initial), number of final
states (HMM.num_final), and number of output probability
distributions (HMM.num_omatrix) in the HMM. Each state
15 specified by an output probability distributions
(states.output[k]), number of arcs going out of the state
(states.num_out), number of arcs going into the state
(states.num_in), and indicator if the state is an initial state
(states.initial) or a final state (states.final). Each transition
arc is specified by the destination and origin of the arc, and
associated transition probability (transitions.trans_prob).
With data structures defined above, the forward algorithm,
for instance, can be conveniently written as:

extern float Discard_Alpha; /* thresholding */
extern float >_urmﬂg>xlﬂgm_;PPNIm‘EP.H.Em *atXa*
extern float *Pj, /* Initial probabilities */

*Scale; /* Bcaling */

forward_computation (hmm, train_data)
struct HMM *hmm,
int  *frain data; /* quantised speech starting from [1] #/
{
© int  *atop, *eptr, 1, 8;
float best_alpha, *eurrent_alpha_ptr, threshold, ¢.prob;
struct transition *tptr;

for(i=1i<="T;i++)
for(s = 0,8 < hmm -> num_states; s+ +}
Alphalills] = 0.0;

Section 9.1. V_

for (8 = 0; 5 < hmm -> num_states; s+ +)
{
if (hmm - > statea[s],initial)
Alpha[1l{e] = Pifal;
}

for{i=Li<=Ti++)
{
best_alpha = Scale(i] = 0.0;
for (8 = 0; s < hmm -> num_states; s+ +)
{
if(i == 1 && hmm -> states[s).initiah)
{ Scalellj + = Alpha[1}fs];
continue;
1
current_alpha_pir = &Alphalil(s);
stop = &(hmm - statess].trans_in[
hmm -> states[sl.num_in]);
o_prob = hmm -> states[s).output{train_datafi]);
for (cptr = &(hmm -> states{s].trans_in[0]);
cptr < stop; eptr+ +)
{ :

tptr = &(hmm - > transitions[*eptrl);
if(il=1){
*current_alpha_ptr + =
Alphali-1]ftptr - > origin]*
{tptr -> trans_prob)*o_prob;}
}
Scalelil + = *current_alpha_ptr;
if (*current_alpha_ptr > best_alpha)
best_alpha = *current _alpha_ptr;
}

threshold = best_alpha * Discard_Alpha;
for (s = 0; 8 < hmm -> num_atates; a+ +)
{

current_alpha_ptr = &Alphalil{s];

if (*current_alpha ptr < threshold)

* .

Scaleli] - = *current_alpha_ptr;
*current_alpha_ptr = 0.0
}

}

if (Scale(i]>MIN_FLOAT)

247
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for s = 0; 5 < hmm -> num atates; s+ +)
Alphalil(s] /= Scale(i];

else
Printf("ERROR: increase threshold ");

The backward algorithm, the Baum — Welch algorithm,
as well as the Viterbi algorithm can be developed in a
similar manner.

9.2. Database and Analysis Conditions

The speech database is crucial to the success of hidden
Markov modelling. A compromise has to be made between
enough detailed system configuration to model variabilities,
and available training data to estimate the free parameters
reliably. For example, the database for the task of resource
management, which is designed for inquiry of naval
resources and used for evaluation of systems in the DARPA
speech recognition projects (4,7,9], contains 4358 sentences
from 105 speakers. It is reported that a decrease in the
number of training data with the fixed system configuration
(fixed number of free parameters) results in much faster
deterioration than that with data-dependent configuration
(reduce the number of free parameters according to the
training data, such as by using fewer generalised triphones)
[8]. Although recognition accuracy can be greatly improved
from  increased training data, the data-dependent
configuration is still important to optimise the recognition
accuracy. With respect to use of a large speech database, a
speaker-independent HMM speech recognition is very
suitable since the database can be collected incrementally. In
a database with millions of sentences, an automatic learning
technique that does not need explicitly to segment and label
the phonemes or words such as the HMM is necessary. As
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pointed out by Lee (8],

We believe larger databases are essential for HMM systems,
and HMM systems ideal for larger databases.

In the resource management database, at the lexical
level, there are 997 words with many confusing pairs, such
as what and what's; the and a; four and fourth; any and
many, and many others. Most of the proper nouns can
appear in singular, plural, and possessive forms. On the
other hand, at the grammatic level, the task is not a very
difficult one because the sentences are generated from a set
of 900 sentence templates which resemble realistic questions
in a database query system.

The most obvious and correct way to model the resource
management task language is to use a finite state language
that generates the same set of sentences as those 900
templates. As the perplexity of such a grammar is too low
{(about 9), a grammar that generates all sentences including
the 900 sentence templates and some illegal sentences is
proposed, i.e. the word pair grammar.

The word pair grammar specifies only the list of words
that can legally follow any given words, which can be
extracted from the 900 sentence templates. Each template is
a network of fags, or categories of words. Given these
templates, what tags can follow any given tags can be easily
determined. From this information and the list of words in
each tag, what words can follow any given word can then be
chosen. Of the 994009 word pairs, only 57878 are legal word
pairs. This grammar has a test-set perplexity of about 60.
To use this grammar for recognition, each word HMM can
only follow those word HMMs in the legal word pair set for
the given model. The transition probability from the given
HMM to the following word HMM is 1/K, where K is the
number of words that can follow the given word.

The complete database of speech consists of 4358
training sentences from 105 speakers and 300 test sentences
from 12 speakers. For both training and evaluation, the
standard SPHINX analysis conditions consist of the
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following:

sampling rate: 16 kHz

analysis method: bilinear transformed LPC cepstrum
LPC analysis order: 14

cepstrum order: 12

bilinear transformation constant: 0.6

window type: Hamming window

window length and shift: 20 ms and 10 ms
pre-emphasis: 1-0.972 ~!

9.3. Experimental Examples

In SPHINX, the signal processing stage is based on the
bilinear transformed LPC cepstrum, which converts the
linear frequency axis into a form of mel-scale [7,13). The
recognition accuracy can be substantially improved because
of such a mel-scale representation. This section will report
experimental results based on the bilinear transformed LPC
cepstrum,

9.3.1. Discrete HMM results

SPHINX was developed using the discrete HMM [7].
Phone or triphone models used here are the same as that
shown in Figure 9.1.1, and are concatenated to form a word
model according to the pronunciation dictionary in training
and recognition procedure,

Three VQ codebooks are used for twelve LPC bilinear
transformed LPC cepstral coefficients; twelve differenced
bilinear transformed LPC cepstral coefficients; and energy
and differenced energy. Use of multiple features and
multiple codebooks can substantially reduce the recognition
error rate. When phone models are used, the word
recognition error rate can be reduced by 40—50% [7).
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Although time duration modelling can significantly improve
the recognition accuracy for speaker-dependent speech
recognition [1,5], use of word duration constraints in
SPHINX as a part of the Viterbi beam search has no
significant effects when grammatic constraints exist. This
indicates that, for speaker-independent speech recognition,
word duration constraints may well be used as a method for
speaker adaptation.

One problem with continuous speech recognition is the
unclear articulation of function words, such as a, the, in, of,
etc. These function words in English are limited, but occur
frequently. A detailed modelling approach is to treat each
phone in each function word separately. By explicitly
modelling the most difficult sub-vocabulary, the recognition
accuracy can be increased considerably. In a similar manner,
function phrases, such as that are of, is the, and that are, can
be explicitly modelled. In the vocabulary of resource
management task, 42 function words and 12 function
phrases are identified and modelled separately. Modelling
these frequently occurring words and phrases increased the
number of free parameters by a factor of 5 compared with to
phone models, and the word recognition error rate can be
reduced by about 25% [7].

The function-word and function-phrase dependent
phone models provide better representation of the function
words. However, simpler phone models for the non-function
words are inadequate, because the realisation of a phone
crucially depends on context. The generalised triphones are
obtained through a greedy context merging procedure from
triphone models based on the discrete output probabilities.
Function word and phrase meodelling can be used in the
clustering procedure along with triphones [7].” In addition,
between-word  coarticulation meodelling can also be
incorporated {6]. The generalised triphone modelling can
empirically determine how many models could be trained
given a set of training data. Generalised triphone models
increased the number of free parameters by a factor of 25
compared with phone models, and reduced the word
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recognition error rate by more than 70% when 1100
generalised triphone models were used [8). Further
improvement can be obtained by using corrective training on
the optimal models, where the error rate can be reduced by
more than 15% [8].

If between-word coarticulation modelling is excluded,
for the test data used here, the error rate increases by about
15%. The word recogaition accuracy is 91.0% when 1000
generalised triphone models are used. If function-word and
function-phrase modelling are further excluded, and a lower
number of generalised triphone models (200) are applied, the
word recognition . accuracy becomes 88.0%. Several
algorithms based on such a configuration will be investigated
hereafter. Although use of less detailed modelling units has
led to poor performance, the interest here is to compare the
performance of different modelling techniques, and 200
generalised triphones should be adequate to see relative
differences.

The training procedure in SPHINX can be briefly
described as follows: the phone model is first re-estimated
from the training data, and these models are then used as
initial parameters for generalised triphones. The discrete
output probabilities are finally smoothed by employing
deleted interpolation with the phone .models and uniform
distribution.

9.3.2. Continuous mixture HMM results

In the continuous mixture HMM implemented here, the
independence assumption is made for different feature
coefficients. The Gaussian density with diagonal covariance
can thus be used. The cepstrum, difference cepstrum,
normalised energy, and difference energy are packed into
one vector. This is similar to the one codebook
implementation of the discrete HMM {7]. Unlike the
discrete HMM, here different features have different
covariance matrices, and such a packing is consistent with
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the independence assumption. Each continuous output
probability consists of four diagonal Gaussian prebability
density functions. To obtain reliable initial models for the

continwous mixture HMM, the Viterbi alignment with the

discrete HMM is used to segment and labe! training speech
phonetically. These labelled segments are then clustered by
using the LBG clustering algorithm to obtain initial means
and diagonal covariances. The forward —backward algorithm
is used iteratively for the monophone models, which are then
used as initial models for the generalised triphone models.
The continuous mixture Viterbi beam search is used for
decoding.

The word accuracy of the continuous mixture HMM is
81.3%, which is significantly lower than that for the
corresponding discrete HMM (88.0%). Although the
performance of the continuous mixture HMM has been
variously reported as significantly better than the
performance of the discrete HMM [10], for the experiments
conducted here, it is significantly worse than the discrete -
HMM. Explanations for this paradox are as follows.

(1) Multiple codebooks are used in the discrete HMM,
therefore the VQ errors for the discrete HMM are not
so serious here. For the discrete HMM based on a
single VQ codebook, the performance of the continuous
HMM is comparable to that of the discrete HMM.

(2) The aumber of mixture-components may be toc small
for speaker-independent large-vocabulary speech
recognition, but increase in the number of mixture-
components will lead to unaffordable computational
complexity.

(3) The diagonal covariance assumption is not appropriate
for the bilinear transformed LPC cepstrum since many
coefficients are strongly correlated after the
transformation. Indeed, investigation of the average
covariance matrix for the bilinear transformed LPC
cepstrum shows that values of off-diagonal components
are generally quite large. :
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(4) The 200 generalised triphones were obtained based on
the discrete output probabilities, which is necessarily
sub-optima! for the continuous mixture HMM.

From this experiment, it can be observed that the
continuous  probability density function must be
appropriately chosen according to feature representations, In
continuous mixture hidden Markov modelling, the feature
representation, the probability density, and the number of
mixture-components will be important related factors. In
general, the probability density function can be well chosen
according to feature representations, but the increase in the
number of mixture-components will be restricted by the
available training data and computing resources. On the
other hand, semi-continuous hidden Markov modelling has
distinct advantages since it is possible to model a mixture of
a large number of densities with a limited amount of
training data and computational complexity,

9.3.3. Semi-continuous HMM results

For the semi-continuous HMM, multiple codebooks are
used instead of packing different feature parameters into one
vector as with the continuous mixture HMM. The initial
model for the semi-continuous HMM comes directly from the
discrete HMM for all the generalised triphones. The initial
VQ covariance matrices are obtained from the k-means
clustering algorithm based on the VQ codebook., The
forward —backward  and Baum — Welch algorithms are
iteratively used to re-estimate simultaneously the model
parameters and three VQ codebooks using the standard
semi-continuous HMM. Deleted interpolation is finally
employed to smooth the discrete output probabilities of the
generalised triphone models with corresponding phone
models as well as uniform distributions. The semi-
continucus Viterbi beam search is used again for decoding.
In computing the semi-continuous output probability density
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function, only the M most significant codewords are used for
subsequent processing. Experiments with the top one and
top four codewords were conducted. :

Under the same analysis conditions as previously, the
word accuracies for the semi-continuous HMM are shown in
Table 9.1. The results for the discrete HMM and the
continuous mixture HMM are also listed for comparison.

Table 9.1.

Word accuracy using 200 generalised triphones,
4358 training sentences, 300 test sentences
Types Word accuracy
Discrete HMM 88.0%
Continuous mixture HMM 81.3%
Semi-continuous HMM + top 1 84.0%
Semi-continuous HMM + top 4 89.1%

From Table 9.1, it can be observed that the semi-
continuous HMM with top-one codeword has poorer
performance than the discrete HMM, but substantially
higher than the continuous mixture HMM. This indicates
that a mixture of a large number of densities is very helpful.
The poor performance of the continuous mixture HMM and
the semi-continuous HMM with the top codeword indicates
that bilinear transformed cepstral coefficients cannot be well
modelled by the diagonal Gaussian assumption. However,
the semi-continuous HMM with the top four codewords
works modestly better than the discrete HMM although the
assumption is inappropriate. In fact, the semi-continuous
HMM with the top four codewords works better than both
the discrete and continuous mixture HMM. Detailed
chservations suggest that the semi-continuous HMM can
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significantly improve the performance of some speakers, but
not others. Overall, it is only slightly better than the
discrete HMM. The improvement may primarily come from
the smoothing effect of the semi-continuous HMM, i.e. the
robustness of multiple codewords and multiple codebooks in
the semi-continuous output probability representation. It
should be pointed out here that, even though 200 generalised
triphone models are relatively well trained compared with
the standard SPHINX version [7], stnoothing by multiple
codewords can still play an important role. As the diagonal
Gaussian assumption may be inappropriate, the covariance
matrices need not be re-estimated. Indeed, fixed covariance
matrices are marginally better than re-estimated ones owing
to inappropriate assumptions. .

9.3.4. Less correlated data results

If the diagonal Gaussian covariance is used, each
dimension in the speech vector should not be correlated. In
Practice, this can be partially satisfied by using less
correlated features as acoustic observation representations,
or by using principal component projection to reduce
correlation. To see the importance of feature representation,
experiments with less correlated data were conducted for the
discrete HMM and the semi-continuous HMM,

Principal component projection was first used to reduce
the correlation of the bilinear transformed LPC cepstrum. In
the implementation here, the projection matrix is computed
by pooling together the bilinear transformed cepstrum of the
whole  training sentences, and then computing the
eigenvector of that pooled covariance matrix. However, only
the insignificant improvements are obtained based on such a
projection [5]. This may be because the covariance for each
codeword is quite different, and such a Projection only makes
average covariance diagonal, which iz inadequate. As
bilinear transformed cepstral coefficients cannot be modelled
well by diagonal Gaussian probability demsity functions,
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experiments without bilinear transformation were conducted.
It is interesting that the recognition accuracy of the 18th
order bilinear transformed cepstrum is about the same as
that of the 12th order bilinear transformed cepstrum [5].
The mel-scale representation actually has the effect of
smoothing high-frequency spectra, which leads to similar
performance of cepstrum using different analysis order. In
contrast, the recognition accuracy of the 18th order cepstrum
is better than that of the 12th order cepstrum, but worse
than that of the bilinear transformed cepstrum. This
indicates that mel-scale representation is indeed suitable for
speaker-independent speech recognition [13]. It should be
pointed out here that the generalised triphones are produced
from the bilinear transformed LPC cepstrum, which may not
be an optimal configuration for other analysis methods.

Table 9.2.
Word accuracy of 18th order cepstrum
{200 generalised triphones)
4358 training sentences, 300 test sentences
Types Word accuracy

Discrete HMM 83.8%
Semi-continuous HMM + top 1 85.5%
Semi-continuous HMM + top 2 87.6%
Semi-continuous HMM + top 4 88.5%
Semi-continuous HMM + top 6 88.6%
Semi-continuous HMM + top 8 88.2%
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The 18th order cepstrum is used here for the semi-
continuous HMM because of less correlated characteristics of
the cepstrum. With 4358 training sentences, test results of
300 sentences are listed in Table 9.2.

Here, the recognition accuracy of the semi-continuous
HMM is significantly better than the discrete HMM, and
error reduction is over 29%. Even if the top one codeword is
used, the semi-continuous HMM is better than the discrete
HMM (85.5% vs 83.8%). Use of multiple codewords (top 4
and top 6) in the semi-continuous output probability density
function greatly improves the word accuracy (from 85.5% to
88.6%). Further increase of codewords used in the semi-
continuous output probability density functions shows no
improvement on word accuracy, but substantial growth of
computational complexity. From Table 9.2, it can be seen
that the semi-continuous HMM with the top four codewords
is adequate (88.5%). In contrast, when bilinear transformed
data were used (Table 9.1), the error reduction was less than
10% compared with the discrete HMM, and the semi-
continuous HMM with the top one codeword is actually
slightly worse than the discrete HMM. This strongly
indicates that appropriate features are very important if a
continuous probability density function, especially the one
with the diagonal covariance assumption, is used. If this
assumption is inappropriate, maximum likelihood estimation
will only maximise the wrong assumption.

Although more than 29% error reduction has been
achieved for 18th order LPC analysis using diagonal
covariance assumption, the last results with the discrete
HMM (bilinear transformed cepstrum, word accuracy 88.3%)
and the semi-continuous HMM (18th order cepstrum, word
accuracy 88.6%) are about the same. This suggests that
bilinear transformation is helpful for recognition, but
produces correlated coefficients, which is irappropriate to the
diagonal Gaussian assumption. Removal of the diagonal
covariance assumption by use of full covariance can be
expected to improve recognition accuracy further. Regarding
use of full covariance, the semi-continuous HMM has a
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distinct advantage. Since Gaussian probability density
functions are tied to the VQ codebook, by choosing the M
most significant codewords, computational complexity can be
several orders lower than the conventional continuous
mixture HMM while maintaining the modelling power of
many mixture-components.

The applicability of the continuous mixture HMM or
the semi-continuous HMM relies on appropriately chosen
acoustic parameters and assumption of the continuous
probability density function. Acoustic features must be well
represented if diagonal covariance is applied to the Gaussian
probability density function. This has been strongly
indicated by the experimental results based on the bilinear
transformed cepstrum and cepstrum.

9.4. Summary

In this chapter we have discussed several
implementational issues and experimental examples in
hidden Markov modelling. As introduced previously,
sufficient training data, automatic learning algorithms, and
detailed modelling are three very important factors of a
successful speech recognition system. From the centinuous
HMM point of view, detailed acoustic modelling can be
achieved in increasing mixture densities. However, the
performance will suffer from insufficient training data if
there are too many free parameters in increasing mixture
densities. From the discrete HMM point of view, detailed
acoustic modelling can be achieved by increasing the size of
VQ codebook. However, once again, the performance will
suffer from insufficient training data. The significance of the
unified modelling approach is that it can model a mixture of
a large number of probability density functions with a
limited amount of training data. In the semi-continuous
output probability, robustness can be enhanced by using
multiple codewords. In addition, the VQ codebook itself can
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be adjusted together with the HMM parameters in order to
obtain the optimum maximum likelihood of the HMM.

These merits of the unified modelling can be viewed as a

good solution to the conflict between detailed acoustic
modelling and insufficient training data.

While it can be concluded that the theory of HMMs is
powerful for modelling speech signals, by itself it has not
totally solved the general speech recognition problem, but
has provided some insight for future researchers to visit,
enhance and report.
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Appendix 2: _
Show Jensen’s inequality H(®,$) = H($,9), where

Appendix 1:
Show the maximum likelihood estimation of a mixture

Gaussian pdf, in a case where the g priori probability Pr(w;)
is unknown.

The equality constraint is given as:

[
DPriw)y=1 o (AL1}

i=1

Using Lagrange's multiplier A (see Section 2.5.3), Eq.
(2.4.8) is modified to the following partial derivative of
augmented log-likelihood with respect to Priwi)

Verwy Lle) (AL2)

= 2, Prie;|z, PV eruy Jog(F (x| w,, @ )Pr(w,))
=1

g
+q~clr:vy Mwﬁﬁﬁﬁ.v
=1

n ' H
= Priw|x s P ——+X=0
__mm. M.A —— y | evwﬂ.ﬁ ___L

By multiplying the above expression by Pr(w,), and
summing over i, the following expression is obtained;

8 "
|>HMM~U1§_§%LH= (A1.3)

i=lk=1

Then, from Eq. (A1.2), the following expression is
obtained:

MlEEH.WM..%leu_R?QL (Al.4)
k=1

H@®.9) = [logf(y|x,®)f(y|x,®)dy

H(®,®) = [logf(y|x,®)f (y|x,D)dy

This is shown by subtracting the above two expressions:

H{(® ®)—H(®,6) (A2.1)
= f(logf(y|x,®) - logf(y|x,®)f(y|x,®)dy

=f sommw“mhwiwﬁ (ylx,®)dy

M%Aﬁlﬁxq_n_@mw since log x=<x-—1

= [f(y|x.®)dy - [f(y|x,®)dy=0
Equality is given when f(y|x,9)=f(y|x,$)
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accent, as problemm 1-2

allophonic models 223, 225

alphabet 46-9

articulation rate 53, 72

assumption, Markov 144, 213
auto-correlation 41

automata, finite state 91-2, 93-4, 95, 98

back propagation algorithm 82

Bahl, L.R., Jelinek, F. & Mercer, R. 194

Baker, J. vii

bandform filter analysis 58

Baum, L.E. vij, 80, 124

Baum, LE. & Eagon, J.E. 157, 163

Baum, L.E, et al. 80, 120, 167, 184

Baum-Welch algorithm 124, 152-8, 167, 194, 209, 212,
214, 219-20, 226, 241, 244, 254
proved 158-64

Bayes decision theory 15-20, 49, 78

Bayes rule 13, 16, 17, 27, 69, 88

beam search algorithm 227, 261, 253-4

bigram model 89, 96-7, 99-100

bit 46, 98

C programs 245.8 .
cell, centroid 111, 116-18,'119, 125, 128-9, 133
cepstral analysis 63-6, 100, 151, 250, 256-9
FFT 63
LPC 63-6
chain, Markov 79, B0, 144
chain rule 13
Chinese, and automatic speech recognition 1
Chomsky, N 89, 914
classifier,
Bayes 19-20, 79
minimum distance 70, 117,118, 125
neural 82
clustering,
fuzzy 45
Gaussian 194
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segmental k-means 239
coarticulation, effects 83, 223-4, 251.2
Cocke-Younger-Kasami algorithm 89
codebook,
- design 111-18
multiple 6, 187-8, 191, 217, 250, 253, 254, 256, 258-9
and phoneme categorisation 131-3
and semi-continuous HMM 186, 189-94, 196-203
vector quantisation 5, 119-30, 184, 187, 208, 217, 231,
250-1, 254, 259-60
coding, speech 129-30
coefficients,
linear predictive 42, 61
LPC cepstral 64-7, 69-70, 71, 218, 250-1, 253, 255-9
computation, logarithmic 243-4
continuity 74-5
convolution 59-60, 63, 65
covariance matrices 38, 70, 125-7, 174, 196-8, 201, 203,
252-4, 256
between-class 216
diagonal Gaussian 176-7, 188, 216, 252-3, 255-6,
255-9, 258-9
estimation 208-9
within-class 216

DARPA speech recognition projects 248
data,
complete 29-33, 35, 121, 133, 136, 203
hand-marked 239
incomplete 29-31, 32-5, 121, 133, 136, 203
insufficient 6, 177, 186, 207-12, 221
misrecognised 216
training 4, 20, 69, 128, 130-1, 222-3, 225, 231, 239,
248, 251-2, 254, 259-60
database, speech 207, 248-50
debugging methods 156
decision,
boundaries 20, 131
regions 20
decision rule,
Bayes 17-18, 19, 78
minimum-error-rate 16, 18, 20, 69
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decision theory 15-20, 49, 76-7, 78
decoder, semi-continuous 199- 200
mmc&_nm_ computational load 78,81
Dempster, A.P,, Laird, NM. & Rubin, D.B. 80
dictation, automatic 1
diphone models 223-4
discriminant analysis 216
distance,
mqum 71, 74, 76-8, 79, 86-7, 93-4
LPC cepstral 66-7
maximum likelihood 68
measure 66-70, 81, 100, 113, 225
Euclidean 67, .3 113, :q 127-9
minimising 74-6, 84-6, ww 4
spectral 66-8
word 84-7, 93-4, 97
distortion measure 53, 113-19, 125-7,
see also m—u_.buam measure
divide-conquer strategy 156

Earley algorithm 89
EM algorithm 24, 29-31, 50, 80, 112, 133, 156, 164

and Gaussian probability density ?nan_on 120, 121-4,

153

in multiple data 32-5

and unified modelling theory 194, 198, 202, 211, 216
end point 54, 74-6, 83, 227
energy parameters 53, 250, 252
entropy 97-9, 127, 176

and mutual information 46- q 132

speech decoder 100
error, mean square 40-1, 60-2,

see also speech recognition, error rate

estimation,

H-criteria 213

initial 238.9

maximum likelihood 35, 50, 111, 124, 164, 262

criteria 212-16, 231
of parameters 6, 21-9, 45- 6, 62, 80, 152, 156, 191,
207-8, 258, 260
maximum mutual information criteria 46, 213-15
minimum discrimination information criteria 213
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mixture density 24-9
Parzen 176, 190
see u_mo EM algorithm; parameters, estimation
evaluation function 229
evaluation of models 145-6, 150
event 11-13, 137
excitation, voice 61-4

Fallside, F. & Woods, W. 53, 62
Fast Fourier Transform (FFT) 55,634
feature analysis 78, 256
feature map numodzpn. 82
feedback techniques 191, 194-202, 203
fenone models 208, 223
filter, bandform 71
formant,

frequencies 61, 175

tracking 3-4, 79
forward- vmnwiw_i algorithm 146-50, 149, 152-3, 164,

199,203, 212, 214-15, wmm 253-4

Fourier num_wm_u short-time 53- m
Fourier transform 54-6, 58-9, 63, 63-4
frame 54-5,71-4

interval 54

length 54, 55, 57
frequency moBmE approaches 53, 58-9, 61, 63
function, objective,

augmented 43-4.

equality constrained 42-5, 262

Taylor series 36-7

univariate 36-7
functions, discriminant 19, 69-70

gradient descent algorithm 214-15
grammar,
artificial 2
context sensitive 91
context-free 89, 91
regular 89, 91-2
stochastic 89, 96-7, 99-100
trainable finite-state 8§
word pair 89, 96, 99-100, 249
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homomorphic analysis 63

information,

channel 47, 48, 49

mutual 48-9, 131-3, 188, 213-15
information theory 45.9, 50, 79
interpolation, deleted 210-12, 231, 252, 254
Itakura-Saito distance 68

Japanese, and automatic speech recognition 1
Jelinek, F. vii, 53

Jensen, T. 30, 263

Juang, BH. 167

k-means algorithm 115-19, 121, 127, 239, 254
Kohonen, T. 82

Kolmogorov, AN. 169

Kronecker k function 163

Kullback-Leibler number 158, 167, 201

Lagrange multiplier 42-3, 161, 262
language modelling 52, 79, 87-100
Chomsky theory 89, 91-4
complexity measures 97-160
formal 98.9
role 88.-90
stochastic 62, 80, 94-7, 99-100, 136
language theory, formal 89, 91-4, 98-9
LBG algorithm 118-19, 1312
learning,
automatic 1, 4, 81, 248-9, 259
Bayesian 78, 231
non-parametric 20
supervised 10, 20-1, 26-7, 49
parametric 20-3
unsuperviged 10, 20-1, 50, 120
paremetric 24-35
least-mean-square algorithm 82
Lee, K.F. 249
level building method 86-7
Levinson, S. 61
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lexis, and speech recognition 2, 3, 87

Linde, Y., Buzo, A. & Gray, RM. 118-19

linear predictive coding (LPC) analysis 53, 60-2, 63-5
Liporace, L.R. 167, 168-70, 184

Mahalanobis distance 70, 113-14, 127
mapping, phototopic 129, 131
Markel, J.D. & Gray, AH. 62
Markov, A.A. T79-80
Markov models, hidden 4-5, 30, 62, 70, 78-81, 139
acoustic pattern matching 78-81, 93, 100
autoregressive 80
basic algorithms 145-58
continuous vii, 5-6, 7, 80, 142, 164, 168-75, 216, 239,
259 : :
continuous mixture 80, 167-8, 177-84, 186, 188,
191-6, 198, 209, 252-4, 259
definition 139-45, 143
discrete vii, 5-6, 7, 80, 130, 136-64, 171, 174, 183,
186, 189, 200, 209, 217, 238.9, 240-1, 258-9
experiments - 250-2
. vs continuous 187-8, 192, 202, 252
first-order 144
implementation issues 238-48
L-mixture 191, 217
left-to-right 240
semi-continwous 5-6, 7, 80, 189-203, 208-9, 216-17,
231, 239, 254-9
state-dependent 209
as stochastic process 80, 136-8, 140-1, 240
structures 239-41
transition-dependent 209-10
variable duration 80
Markov processes 136-9, 138, 140
Markov property 137, 164, 175, 184, 198, 202
matching,
linear/non-linear 71-3, 72, 74
path 75
maximum, local 36-8
mel-scale 56, 250, 257
min-max theory 22, 35-45
minimum, local 36-8
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modelling, acoustic,

see also pattern matching, acoustic
monotonicity 74-§

NETgram model 87

networks, neural 4, 81-3, 97, 100, 224
Ney,H. 91

Ney,H. et al. 89

optimality principle 77-8
optimisation,
equality constrained 42-5
gradient technique 152-8
linearly constrained 122
multivariate case 37-42
univariate case 36-7
output, independence 144, 213
output density function, continuous 191
output probability 79, 136, 139, 143-4, 147, 155, 164,
197, 202, 209-10, 212, 217, 218-19
continuous 80, 140, 142, 167, 218, 253
density 168-9 .
unimodal/multimodal 175-8
discrete 5, 140, 142, 178, 187-9, 191, 199, 225,
.251-2, 254
semi-continuous 5-6, 186, 190-2, 199, 202-3, 217,
254-6, 258-9
state dependent 240
transition-dependent 239

parameters,
constraint 210-12
estimation 6, 20, 69, 120, 146, 150, 152-64, 188,
202, 219, 226, 246, 254
classification 4-5
and continuous HMM 169-74, 178-83, 225
and feedback 194-9
initial 238-9
maximum likelihood 6, 21-9, 45-6, 62, 80, 152,
156, 191, 207-8, 211-15
see also EM algorithm
free 5, 144, 176, 186, 188-9, 191, 203, 208, 231,
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248, 251, 259
optimal 40-2, 84
partitioning 187, 224
tying 208-10, 231
parsing algorithm 89
pattern matching, acoustic 5-6, 52, 70-87, 88, 90, 97,
100, 259-60
continuous speech algorithms 83-7
dynamic time warping 70, 71-8, 79, 81, 83, 84, 89,
100, 226
and HMM 78-81, 83, 100
and neural networks 81-3, 97, 100, 226
pattern recognition 10-49
problems 10, 49-50
perceptron,
multi-layer 82
single-layer 82
perplexity 98-100, 249
Petrie, T. 157
phone models 223, 226, 239-40, 250-2, 254
word-dependent - 223
phoneme,
categorisation 130-3
recognition 3, 82
phrase, function phrase 251-2
Pierre, D.A. 77
pitch, tracking 79
power apectrum 66-8
pragmatics of language 87
probability,
a posteriori 16, 17-19, 69, 124, 125, 153-4, 174, 197-8
and estimation 25-8, 34
a priori  15-186, 17, 20, 47, 69-70, 88, 127, 262
and estimation 24, 26-8
conditional - 11-12, 14, 18, 26, 47, 137
intermediate 242
joint 11-12, 14, 121, 147, 220
marginal 11-12, 14, 122
mass function 13-14, 15
see also output probability;
transition probability
probability density function 14, 16, 24, 53, 69, 80, 100,
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111, 168, 256
category-conditional 17, 20-1, 24, 27, 50, 69
continuous 5-6, 140-2, 167, 178, 184, 187-92, 203,

213, 221, 254, 258-9
Gaussian 20, 113-14, 1945, 202, 221, 253, 259

and distance 69-70
mixture 121-4, 125.7, 175-7, 182, 262
multivariate 22, 23, 29, 38-40, 168-9, 173-5,
176, 188
and parameter estimation 21, 22-3, 279, 120,
182-4
probability density function,
Gaussian, (continued)
univariate 22-3, 27.9
and vector quantisation 119-20
intermediate 181, 201, 217
and Markov properties 124
mixture 24-5, 27-9, 34, 80, 153, 188
continuous 5
finite 189
large 5, 186, 191
simplified 124-30, 126, 133
Parzen estimation 176
probability theory 11-15, 49, 789
pProduction rales 91-2
programming, dynamic 71-8
one-pass 87, 93
two-level 86, 93
see also time warping, dynamiec
projection, principal component 256-7

Q-function vii, 30-2, 34-5, 122, 125, 128, 187

and Baum-Welch algorithm 158-64, 167, 184, 209,

219-20

and continuous HMM 169-72, 179-80, 217

and unified modelling theory 200-2, 203
quantisation, see scalar quantisation; vector quantisation
quantiser, optimal 115-17
quefrency 63

Rabiner, L.R. & Schafer, RW. 53, 62
research,
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data-based 3,4

knowledge-based 3-4, 10
risk, conditional 17, 18-19
Rtischev, D. 231

saddle point 36-7

sample space 11, 13, 17, 46, 130

scalar quantisation 111

scaling principle 241-3, 244

score evaluation 152

search, gradient 82, 214

search theory 228-30

search tree 227-9, 228

segment models 223

segmentation 3, 82, 83-7

semantics, and speech recognition 2, 3, 87

Shannen, C.E, 79

Shannon’s first theorem 47

signal processing 52, 53-70, 79, 88, 90, 100, 177, 250-2
cepstral analysis 63-6, 100, 151, 250, 256-9
distance measure 66-70
Fourier-analysis, short-time 53-6
LPC analysis 60-2, 63-5
z-transform 57-60, 61, 63-5, 67

silence models 226

speaker adaptation algorithms 230-1, 251

spectral analysis 53-6, 139

spectral domain approaches 54

speech, spectrum 3, 61-2, 63-5

speech processing, see speech recognition

speech recognition vii, 79
accuracy 3-4, 213, 215-16, 224, 227, 248, 250-8

factors in 56, 71, 177, 187-8, 221-2
error rate  215-16, 250-2, 258
feature vectors 42
and HMMs 207-31
isolated/continuous 225-30
large-vocabulary systems 5, 245, 253
multiple features 216-17
speaker-dependent 2, 221, 230-1, 251, 252-3
speaker-independent 5, 187-8, 212, 230-1, 248-50,
251, 257
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uncertainties 1.2, 4, 52, 136, 175, 207
8ee also language modelling; pattern matching,
acoustic; signal processing; SPHINX
speech signal, waveform 53, 1, 3,
see also signal processing
speech units,
representation 222.5 231
subword models 223-5, 226
whole-word models 222-3
SPHINX 238, 240, 249, 250-2, 256
stack decoding algorithm 97, 227, 229.30
start symhol 9]
state,
duration 218-21
sequence 79-80, 139, 148-7, 220, 226
optimal 151-2, 227, 230
stationary point 36-8, 42-5
symbol 5, 46-9
Syntax, and speech recognition 2, 3, 87-100

tags 249
thresholding of variables 244.5
time domain approaches 53, 54, 58-9, 63, 84
time duration modelling 218, 218-21, 231, 240, 242-3 251
time warping, dynamic 70, 71-8, 79, 81, 83, 89, 100, 226
training, corrective 213, 215-16, 252
transformation,
bilinear 258
growth 163
transition Probability 138, 143-4, 147, 154-8, 164, 182,
197, 209, 218-20, 239, 249
trigram mode] 89, 96-7, 99
triphone models 223-5, 239, 250, 251
generalised 223, 225, 248, 251-4, 256-7
Turing-Good estimate 97

unified modelling theory,

proof 200-2

and vector quantification 6, 130, 187-203, 231, 259-60
unigram model 9¢-7

variabilities, modelling 2, 4, 78, 81, 225
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variable, random 13-14, 176
continuous 14-15, 16, 38
discrete 13-14, 15, 30, 32
vector, random 14, 31, 33, 112
vector quantisation vii, 5-6, 30, 111-33
and category discrimination 130-3
conventional 112-19, 133, 191-2, 198
and distortion 112-15
k-means algorithm 115-19, 121
entropy contrained 127
error 113, 167, 187-9, 253
feedback 191, 203
fuzzy 44-5,127-8, 190, 191-2, 202
generalised k-means 127
and HMM 119-20, 124, 130, 133, 136, 167, 186
discrete 187-8
learning 131
mixture density 189
mixture Gaussian 125-7
E:E-umg:mjm 180, 191-2, 202
mutual information based 131-2
phototopic mapping 129131
supervised 203 .
and unified modelling theory 6, 130, 187-203, 231
see also codebook
Viterbi decoding algorithm 71, 81, 100, 151-2, 164, 203,
221, 226- 7, 245
modified 199-200, 253
Viterbi search 228-30, 251, 253-4
vocabulary, see lexis
vocal tract, modelling 61-2, 63-4, 175, 230

Welch, R. vii, 8¢, 124,
see also Baum-Welsh algorithm
window, matching 75-7
windowing 54.5
word,
boundary 93, 226-7
function words 251-2
recognition 2, §2.3
Bequence 83-7, 89, 93-5, 97-8, 213, 227-8
string 88, 96, 230
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Yule-Waker equation 41

z-transform 57-60, 61, 63-5, 67
zero crossing rate 53
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